Convolutional layer exertion on few-shot learning for brain tumor classification

Authors

  • Victor Immanuel Sunarko university of Pembangunan Nasional Veteran Jawa Timur, Indonesia
  • Eva Yulia Puspaningrum university of Pembangunan Nasional Veteran Jawa Timur, Indonesia
  • Riana Retno Widiastuty university of Pembangunan Nasional Veteran Jawa Timur, Indonesia
  • Surjo Hadi University of Yos Soedarso Surabaya, Indonesia
  • Mohd Khalid Awang University Sultan Zainal Abidin Besut Campus, Malaysia, Indonesia
  • I Gede Susrama Mas Diyasa UPN "Veteran" Jawa Timur, Indonesia

DOI:

https://doi.org/10.21107/kursor.v13i2.430

Keywords:

Brain Tumor, Convolutional Neural Networks, data augmentation, Few-Shot Learning, MRI images

Abstract

Brain tumors, though relatively rare, pose a significant threat due to their critical location within the brain, impacting essential bodily functions. Accurate and timely diagnosis is vital, but traditional diagnostic methods are time-intensive and rely heavily on large labeled datasets. This study addresses these challenges by proposing a Few-Shot Learning (FSL) framework enhanced with Convolutional Neural Networks (CNNs) to classify brain tumors using MRI images. By employing the Matching Network architecture, the model leverages limited training data through an N-way-K-shot setup. Training results demonstrated accuracy levels of 71.58% (1-shot) and 82.89% (5-shot) for 1-layer CNNs, 66.65% (1-shot) and 84.03% (5-shot) for 3-layer CNNs, and 63.43% (1-shot) and 84.94% (5-shot) for 5-layer CNNs. However, validation accuracy revealed overfitting concerns, with the highest performance at 51.56% (1-layer, 1-shot). These results underscore the potential of FSL in medical imaging while highlighting the need for advanced augmentation and feature representation techniques to improve generalization.

Downloads

Download data is not yet available.

References

[1] T. N. Papadomanolakis, E. S. Sergaki, A. A. Polydorou, A. G. Krasoudakis, G. N. Makris-Tsalikis, A. A. Polydorou, N. M. Afentakis, S. A. Athanasiou, I. O. Vardiambasis dan M. E. Zervakis, “Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT,” Brain Sciences, vol. 13, no. 2, p. 348, 2023, https://doi.org/10.3390/brainsci13020348 .

[2] W. Tian, D. Li, M. Lv dan P. Huang, “Axial Attention Convolutional Neural Network for Brain Tumor Segmentation with Multi-Modality MRI Scan,” Brain Sciences, vol. 13, no. 1, p. 12, 2023, https://doi.org/10.3390/brainsci13010012 .

[3] S. S. Sabila dan H. P. A. Tjahyaningtyasa, “MULTIPLE BRAIN TUMORWITHMODIFIEDDENSENET121ARCHITECTURE USING BRAIN MRI IMAGES,” Jurnal Ilmiah KURSOR, vol. 12, no. 8, pp. 147-158, 2024, https://doi.org/10.21107/kursor.v12i3.379 .

[4] M. Arabahmadi, R. Farahbakhsh dan J. Rezazadeh, “Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging,” Sensors, vol. 22, no. 5, 2022, https://doi.org/10.3390/s22051960 .

[5] H. S. Basavegowda dan G. Dagnew, “Deep learning approach for microarray cancer data classification,” CAAI Transactions on Intelligence Technology, vol. 5, no. 1, pp. 22-23, 2020, https://doi.org/10.1049/trit.2019.0028 .

[6] H. Ayeshaa, S. Iqbal, M. Tariqa, M. Abrar, M. Sanaullaha, I. Abbas, A. Rehmanc, M. F. K. Niazi dan S. Hussaine, “Automatic medical image interpretation: State of the art and future directions,” Pattern Recognition, vol. 114, 2021, https://doi.org/10.1016/j.patcog.2021.107856 .

[7] I. G. S. M. Diyasa, W. S. J. Saputra, A. A. N. Gunawan, D. Herawati, S. Munir dan S. Humairah, “Abnormality Determination of Spermatozoa Motility Using Gaussian Mixture Model and Matching-based Algorithm,” Journal of Robotics and Control, vol. 5, no. 1, 2024, https://doi.org/10.18196/jrc.v5i1.20686 .

[8] R. Thangaraj, S. Anandamurugan dan V. K. Kaliappan, “Automated tomato leaf disease classification using transfer learning-based deep convolution neural network,” Journal of Plant Diseases and Protection, vol. 128, pp. 73-86, 2021, https://doi.org/10.1007/s41348-020-00403-0 .

[9] C. Janiesch, P. Zschech dan K. Heinrich, “Machine learning and deep learning,” Electronics Markets, 2021, https://doi.org/10.1007/s12525-021-00475-2 .

[10] W. Ayadi, W. Elhamzi, I. Charfi dan M. Atri, “Deep CNN for Brain Tumor Classification,” Neural Processing Letters, vol. 53, pp. 671-700, 2021, https://doi.org/10.1007/s11063-020-10398-2 .

[11] I. G. S. M. Diyasa, A. Fauzi, M. Idhom dan A. Setiawan, “Multi-face Recognition for the Detection of Prisoners in Jail using a Modified Cascade Classifier and CNN,” dalam Journal of Physics: Conference Series, 2021, https://doi.org/10.1088/1742-6596/1844/1/012005 .

[12] F. Badri, M. T. Alawiy dan E. M. Yuniarnoa, “Deep learning architecture based on convolutional neural network (cnn) on animal image classification,” Jurnal Ilmiah KURSOR, vol. 12, no. 2, pp. 83-92, 2023, https://doi.org/10.21107/kursor.v12i2.349.

[13] E. Irmak, “Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 45, pp. 1015-1036, 2021, https://doi.org/10.1007/s40998-021-00426-9 .

[14] S. Athisayamani, R. S. Antonyswamy, V. Sarveshwaran, M. Almeshari, Y. Alzamil dan V. Ravi, “Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification,” Diagnostics, vol. 13, no. 4, p. 668, 2023, https://doi.org/10.3390/diagnostics13040668 .

[15] B. A. Mohammed dan M. S. Al-Ani, “An efficient approach to diagnose brain tumors through deep CNN,” Mathematical Biosciences and Engineering, vol. 18, no. 1, pp. 851-867, 2020, https://doi.org/10.3934/mbe.2021045 .

[16] S. Laenen dan L. Bertinetto, “On Episodes, Prototypical Networks, and Few-Shot Learning,” dalam NeurIPS Proceedings, 2021, .

[17] D. R. Nayak, N. Padhy, P. K. Mallick, M. Zymbler dan S. Kumar, “Brain Tumor Classification Using Dense Efficient-Net,” Axioms, vol. 11, no. 34, 2022, https://doi.org/10.3390/axioms11010034 .

[18] R. Anantama, “Application Of Cost-Sensitive Convolutional Neural Network For Pneumonia Detection,” KURSOR, vol. 11, no. 3, 2022, https://doi.org/10.21107/kursor.v11i3.264 .

[19] S. Mai, H. Hu dan J. Xu, “Attentive matching network for few-shot learning,” Computer Vision and Image Understanding, vol. 187, 2019, https://doi.org/10.1016/j.cviu.2019.07.001 .

[20] A. G. Sooai, S. D. B. Mau, D. J. Manehat, Y. C. H. Siki, S. C. Sianturi dan A. H. Mondolang, “Optimizing Lantana Classification: High-Accuracy Model Utilizing Feature Extraction,” Jurnal Ilmiah KURSOR, vol. 12, no. 2, pp. 49-58, 2023, https://doi.org/10.21107/kursor.v12i2.347 .

[21] F. R. Kusumajati, B. Rahmat dan A. Junaidi, “Implementation Of Balancing Data Method Using Smotetomek In Diabetes Classification Using Xgboost,” KURSOR, vol. 12, no. 4, 2024. https://doi.org/10.21107/kursor.v12i4.410 .

[22] G. Algana dan I. Ulusoyb, “Image classification with deep learning in the presence of noisy labels: A Survey,” Knowledge-Based Systems, vol. 215, 2021, https://doi.org/10.1016/j.knosys.2021.106771 .

[23] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo dan C.-W. Lin, “Deep learning on image denoising : Anoverview,” Neural Networks, vol. 131, pp. 251-275, 2020, https://doi.org/10.1016/j.neunet.2020.07.025.

[24] D. Chen, Y. Chen, Y. Li, F. Mao, Y. He dan H. Xue, “Self-Supervised Learning for Few-Shot Image Classification,” 2021, https://doi.org/10.1109/ICASSP39728.2021.9413783 .

[25] Y. Anagun, “Smart brain tumor diagnosis system utilizing deep convolutional neural networks,” Multimedia Tools and Applications, vol. 82, p. 44527–44553, 2023, https://doi.org/10.1007/s11042-023-15422-w .

[26] C. Zhang, Y. Cai, C. Shen dan G. Lin, “DeepEMD: Few-Shot Image Classification with Differentiable Earth Mover’s Distance and Structured Classifiers,” dalam Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, https://doi.org/10.1109/CVPR42600.2020.01222 .

[27] F. Gao, B. Li, L. Chen, Z. Shang, X. Wei dan C. He, “A softmax classifier for high-precision classification of ultrasonic similar signals,” Ultrasonics, vol. 112, 2021, https://doi.org/10.1016/j.ultras.2020.106344.

[28] M. R. M. Ariefwan, I. G. S. M. Diyasa dan K. M. Hindrayani, “InceptionV3, ResNet50, ResNet18 and MobileNetV2 Performance Comparison on Face Recognition Classification,” Literasi Nusantara, vol. 4, no. 1, 2023.

Downloads

Published

2025-12-27

Issue

Section

Articles

Citation Check