EVALUATION OF PARTICLE SWARM ALGORITHM MODIFICATIONS ON SUPPORT VECTOR MACHINE HYPERPARAMETER OPTIMIZATION TUNING FOR RAIN PREDICTION
DOI:
https://doi.org/10.21107/kursor.v12i4.411Keywords:
Convergence, Modified Particle Swarm Optimization, Robustness, Support Vector MachineAbstract
The Particle Swarm Optimization (PSO) algorithm, though simple and effective, faces challenges like premature convergence and local optima entrapment. Modifications in the PSO structure, particularly in acceleration coefficients ( and ), are proposed to address these issues. Techniques like Time Varying Acceleration Coefficients (TVAC), Sine Cosine Acceleration Coefficients (SCAC), and Nonlinear Dynamics Acceleration Coefficients (NDAC) have been implemented to enhance convergence speed and solution quality. This research evaluates various PSO modifications for improving convergence and robustness in rainfall potential prediction using Support Vector Machine (SVM) classification. The UAPSO-SVM algorithm C=0.82568 and γ=0.01960 excels in initial exploration, discovering more optimal global solutions with smaller variability. In contrast, TVACPSO-SVM shows gradual improvement but requires more iterations for stability, while SBPSO-SVM achieves the fastest convergence at iteration 14 but risks overfitting. Robustness analysis reveals all PSO-SVM variants maintain stable performance despite variations in dataset subset sizes, with accuracy stabilizing after a spike at 20%.. Therefore, PSO modifications enhance convergence speed and resilience to data fluctuations, improving their effectiveness for rainfall prediction.
Downloads
References
[1] Bimantara, I. M. S., & Widiartha, I. M. (2023). Optimization of K-Means Clustering Using Particle Swarm Optimization Algorithm for Grouping Traveler Reviews Data on Tripadvisor Sites. Jurnal Ilmiah Kursor, 12(1), 1-10.
[2] Ramírez-Ochoa, D. D., Pérez-Domínguez, L. A., Martínez-Gómez, E. A., & Luviano-Cruz, D. (2022). PSO, a swarm intelligence-based evolutionary algorithm as a decision-making strategy: A review. Symmetry, 14(3), 455.
[3] Nur, A. Z., Suyono, H., & Aswin, M. (2020). APPLICATION OF HYBRID GA-PSO TO IMPROVE THE PERFORMANCE OF DECISION TREE C5. 0. Jurnal Ilmiah Kursor, 10(4).
[4] Abbaszadeh, M., Soltani-Mohammadi, S., & Ahmed, A. N. (2022). Optimization of support vector machine parameters in modeling of Iju deposit mineralization and alteration zones using particle swarm optimization algorithm and grid search method. Computers & Geosciences, 165, 105140.
[5] Deligkaris, K. (2024). Particle Swarm Optimization and Random Search for Convolutional Neural Architecture Search. IEEE Access.
[6] Siivola, E., Paleyes, A., González, J., & Vehtari, A. (2021). Good practices for Bayesian optimization of high dimensional structured spaces. Applied AI Letters, 2(2), e24.
[7] Van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information sciences, 176(8), 937-971.
[8] Freitas, D., Lopes, L. G., & Morgado-Dias, F. (2020). Particle swarm optimisation: a historical review up to the current developments. Entropy, 22(3), 362.
[9] Houssein, E. H., Gad, A. G., Hussain, K., & Suganthan, P. N. (2021). Major advances in particle swarm optimization: theory, analysis, and application. Swarm and Evolutionary Computation, 63, 100868.
[10] Tian, D., Zhao, X., & Shi, Z. (2019). Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization. Swarm and Evolutionary Computation, 51, 100573.
[11] Wu, L., Zhao, D., Zhao, X., & Qin, Y. (2023). Nonlinear Adaptive Back-Stepping Optimization Control of the Hydraulic Active Suspension Actuator. Processes, 11(7), 2020.
[12] Gad, A. G. (2022). Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 29(5), 2531-2561.
[13] Tian, D., Zhao, X., & Shi, Z. (2019). Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization. Swarm and Evolutionary Computation, 51, 100573.
[14] Tsai, C. Y., & Kao, I. W. (2011). Particle swarm optimization with selective particle regeneration for data clustering. Expert Systems with Applications, 38(6), 6565-6576.
[15] Kardani, N., Bardhan, A., Samui, P., Nazem, M., Asteris, P. G., & Zhou, A. (2022). Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients. International Journal of Thermal Sciences, 173, 107427.
[16] Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on evolutionary computation, 8(3), 240-255.
[17] K. Chen, F. Zhou, L. Yin, et al., A hybrid particle swarm optimizer with sine cosine acceleration coefficients, Inf. Sci. 422 (2018) 218–241.
[18] Fernando, W., Jollyta, D., Priyanto, D., & Oktarina, D. (2024). THE INFLUENCE OF DATA CATEGORIZATION AND ATTRIBUTE INSTANCES REDUCTION USING THE GINI INDEX ON THE ACCURACY OF THE CLASSIFICATION ALGORITHM MODEL. Jurnal Ilmiah Kursor, 12(3), 111-122.
[19] Kalita, D. J., & Singh, S. (2020). SVM hyper-parameters optimization using quantized multi-PSO in dynamic environment. Soft Computing, 24(2), 1225-1241.
[20] Candelieri, A., Giordani, I., Archetti, F., Barkalov, K., Meyerov, I., Polovinkin, A., ... & Zolotykh, N. 2019. Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization. Computers & Operations Research, 106, 202-209. https://doi.org/10.1016/j.cor.2018.01.013.
[21] Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., & Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling, 406, 109-120.
[22] Nalepa, J., & Kawulok, M. (2019). Selecting training sets for support vector machines: a review. Artificial Intelligence Review, 52(2), 857-900.
[23] Sajedi, S. O., & Liang, X. (2020). A data‐driven framework for near real‐time and robust damage diagnosis of building structures. Structural Control and Health Monitoring, 27(3), e2488.
[24] Shih, H. C., Stow, D. A., & Tsai, Y. H. (2019). Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248-1274.
[25] Bouchene, M. M., & Boukharouba, A. (2022). Features extraction and reduction techniques with optimized SVM for Persian/Arabic handwritten digits recognition. Iran Journal of Computer Science, 5(3), 247-265.
[26] Irianto, H. A. (2021). Statistik untuk Ilmu Sosial: Aplikatif untuk Ilmu-ilmu Sosial. Prenada Media.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Aina Latifa Riyana Putri, Joko Riyono, Christina Eni Pujiastuti, Supriyadi
This work is licensed under a Creative Commons Attribution 4.0 International License.