DEEP LEARNING ARCHITECTURE BASED ON CONVOLUTIONAL NEURAL NETWORK (CNN) IN IMAGE CLASSIFICATION

Authors

  • Fawaidul Badri University of Islam Malang, Indonesia
  • M. Taqijuddin Alawiy University of Islam Malang, Indonesia
  • Eko Mulyanto Yuniarno Institut Teknologi Sepuluh Nopember, Indonesia

DOI:

https://doi.org/10.21107/kursor.v12i2.349

Keywords:

Deep Learning, CNN, Multi Layer Perceptron, Konvolusi, Tensorflow.

Abstract

In current technological developments, Deep Learning is one of the most popular studies today, especially in the fields of machine learning and computer vision, GPU Acceration Technology is one of the reasons for the development of Deep Learning. Deep Learning has a very good ability to solve classic problems in the field of computer vision, one of which is in the case of object classification in images. one of the deep learning methods that is often used in image processing is the Convolution Neural Network (CNN) which is a development of the Multi Layer Perceptron method. This study uses the CNN architecture which consists of a convolution layer, as well as a fully connected layer, and will also determine the appropriate Optimizer and Loss function for CNN. The implementation of this method uses Google Colab (Tensorflow and Keras) with the Python programming language. In the training process using CNN, setting the number of epochs is done to improve accuracy in image classification, in the first scenario using epoch 20 produces an average accuracy of 99.45 with a loss value of 1.66. In the second scenario using epoch 15 produces an average accuracy value of 99.00 with a loss value of 2.92. then in the third scenario with a number of epochs 10 it produces an average accuracy value of 95.55 with a loss value of 95.55, while in the last scenario with a number of epochs 5 it produces an average accuracy value of 73.6 with a loss value of 51.92. From the 4 trial scenarios using the CNN method gives effective results and produces a fairly good accuracy value with an average accuracy and loss value of 99.99%. As well as the results of an average loss of 4.

Downloads

Download data is not yet available.

References

M. Abuzneid and A. Mahmood, “Improving Human Face Recognition using Deep Learning based Image Registration and Multi-Classifier Approaches,” Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. AICCSA, vol. 2018-Novem, 2019.

Y. Harjoseputro, “Convolutional Neural Network (Cnn) Untuk Pengklasifikasian Aksara Jawa,” Buana Inform., p. 23, 2018.

Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with convolutional neural network,” 2014 13th Int. Conf. Control Autom. Robot. Vision, ICARCV 2014, pp. 844–848, 2014.

A. Muntasa, “Features fusion based on the fisherface and simplification of the laplacian smoothing transform,” Int. J. Electr. Eng. Informatics, vol. 9, no. 4, pp. 716–731, 2017.

N. A. Azman, A. Mohamed, and A. M. Jamil, “Artificial Intelligence in Automated Bookkeeping: A Value-added Function for Small and Medium Enterprises,” Int. J. Informatics Vis., vol. 5, no. 3, pp. 224–230, 2021.

I. A. Sabilla, “Arsitektur Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Dan Kesegaran Buah Pada Neraca Buah,” Tesis, no. 201510370311144, pp. 1–119, 2020.

S. R. Suartika E. P, I Wayan, Wijaya Arya Yudhi, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) Pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, p. 76, 2016.

X. Gu, Z. Shen, J. Xue, Y. Fan, and T. Ni, “Brain Tumor MR Image Classification Using Convolutional Dictionary Learning With Local Constraint,” Front. Neurosci., vol. 15, no. May, pp. 1–12, 2021.

E. Irmak, “Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 45, no. 3, pp. 1015–1036, 2021

M. Hammad Saleem, J. Potgieter, and K. Mahmood Arif, “Plant Disease Detection and Classification by Deep Learning,” Nature, vol. 29, no. 7553, pp. 1–73, 2016.

M. I. Mardiyah, “Implementasi Deep Learning untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) Pada Citra Kebun dan Sawah,” Univ. Islam Indones., no. June, 2020.

A. Peryanto, A. Yudhana, and R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning BerbPeryanto, A., Yudhana, A., & Umar, R. (2020). Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Format : Jurnal Ilmiah Teknik I,” Format J. Ilm. Tek. Inform., vol. 8, no. 2, p. 138, 2020.

B. Khagi and G. R. Kwon, “3D CNN based alzheimer’s diseases classification using segmented grey matter extracted from whole-brain MRI,” Int. J. Informatics Vis., vol. 5, no. 2, pp. 200–205, 2021.

N. Khunafa Qudsi et al., “Identifikasi Citra Tulisan Tangan Digital Menggunakan Convolutional Neural Network (CNN),” Semin. Inform. Apl. Polinema , pp. 48–53, 2019.

C. Yu, R. Han, M. Song, C. Liu, and C. I. Chang, “A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial-spectral fusion,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 2485–2501, 2020.

A. Sharma and G. Phonsa, “Image Classification Using CNN,” SSRN Electron. J., no. Icicc, pp. 1–5, 2021.

A. Peryanto, A. Yudhana, and R. Umar, “Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 45–51, 2020.

E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, p. 61, 2018.

A. A. Elsharif, I. M. Dheir, and S. S. Mettleq, Alaa Soliman Abu Abu-Naser, “Potato Classification Using Deep Learning Classification using Deep Learning,” Int. J. Acad. Pedagog. Res., vol. 3, no. 12, pp. 1–8, 2019.

Downloads

Published

2023-12-10

Issue

Section

Articles

Citation Check