APPLICATION OF MULTISTAGE CLUSTERING FOR MAPPING ECONOMIC POTENTIAL IN EAST JAVA PROVINCE

Authors

  • Ronny Susetyoko
  • Edi Satriyanto Politeknik Elektronika Negeri Surabaya, Indonesia
  • Alfi Fadliana
  • Muhammad Syahfitra

DOI:

https://doi.org/10.21107/kursor.v12i01.325

Keywords:

mapping, multistage clustering, OPTICS, Silhouette score, Davies-Bouldin score

Abstract

This study aims to map the economic potential in East Java Province based on GRDP according to business field category. Multistage clustering is a method developed for outlier data and datasets with large variance. Multistage clustering is a combination of Ordering Points to Identify the Clustering Structure (OPTICS) and K-Means. The first stage was grouped using OPTICS. The outlier data resulting from the clustering stage is used as a dataset in the second stage using K-Means. The performance of this method is compared with several other methods, namely: K-Means, DBSCAN – K-Means, Agglomerative, Fuzzy C-Means (FCM), Possibilistic C-Means (PCM), and Fuzzy Possibilistic C-Means (FPCM) based on the characteristics of the Silhouette score and Davies-Bouldin score. Multistage clustering was chosen as the best method with a Silhouette score of 0.442 and Davies-Bouldin score of 0.388. With the Elbow method and the two metrics, the optimum number of clusters is 8 clusters. The results of this mapping method, the City of Surabaya forms a separate cluster which has the highest economic potential in 15 categories of business fields. Next Gresik, Pasuruan, Sidoarjo, and Probolinggo have the second highest economic potential with 10 categories of business fields ranking in the top 3.

Downloads

Download data is not yet available.

References

[1] S. N. Aisah, A. Nurcahyani, and D. C. Rini, “Implementasi Fuzzy C–Means Clustering (Fcm) Pada Pemetaan Daerah Potensi Transmigrasi Di Jawa Timur,” J. Tek. Inform. UNIKA St. Thomas, vol. 07, pp. 33–40, 2022, doi: 10.54367/jtiust.v7i1.1841.
[2] J. Tamaela, E. Sediyono, and A. Setiawan, “Cluster Analysis Menggunakan Algoritma Fuzzy C-means dan K-means Untuk Klasterisasi dan Pemetaan Lahan Pertanian di Minahasa Tenggara,” J. Buana Inform., vol. 8, no. 3, 2017, doi: 10.24002/jbi.v8i3.1317.
[3] M. G. G. N. A. Yuniarti, “Pemetaan Sektor Unggulan Untuk Mendukung Pertumbuhan Ekonomi di Kabupaten Pegunungan Arfak Provinsi Papua Barat Lapangan Usaha Industri Pengolahan Pengadaan Listrik dan Gas Pengadaaan Air , Sampah , dan Daur Ulang Kontruksi Perdagangan Besar dan Eceran ;,” J. Ilm. Muqoddimah, vol. 5, no. 1, pp. 104–111, 2021, [Online]. Available: https://jurnal.ugm.ac.id/jgs/article/view/63890/30608;
[4] M. Wahed, “Pemetaan_Potensi_Ekonomi_Sektoral_dan_Estimasi_Per,” J. Ekon. dan Bosnis, vol. Vol.5 No.1, no. 1, pp. 1–16, 2018.
[5] E. D. A. Widyaningrum and H. Cahyono, “Pemetaan Potensi Wilayah Guna Mendorong Pembangunan Ekonomi Kabupaten Ngawi,” J. Din. Ekon. Pembang., vol. 3, no. 2, pp. 117–139, 2020, doi: 10.14710/jdep.3.2.117-139.
[6] S. Wulandary, “Vector Autoregressive Integrated (VARI) Method for Forecasting the Number of Internasional Visitor in Batam and Jakarta,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 94–108, 2020, doi: 10.20956/jmsk.v17i1.10536.
[7] H. Prasetyo, “Pengelompokan wilayah menurut potensi ekonomi menggunakan modifikasi algoritme fuzzy k-prototypes untuk penentuan target pembangunan desa Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing t,” J. Teknol. dan Sist. Komput., vol. 10, no. 1, pp. 46–52, 2022, doi: 10.14710/jtsiskom.2022.14247.
[8] A. Ali et al., “Systematic Review: A State of Art ML Based Clustering Algorithms for Data Mining,” Proc. - 2020 23rd IEEE Int. Multi-Topic Conf. INMIC 2020, 2020, doi: 10.1109/INMIC50486.2020.9318060.
[9] R. Rizky, A. Rahman, and A. W. Wijayanto, “Pengelompokan Data Gempa Bumi Menggunakan Algoritma Dbscan Grouping Earthquakes Data Using Dbscan Algorithm,” J. Meteorol. dan Geofis., vol. 22, no. 1, pp. 31–38, 2021.
[10] J. Liu, Z. Tian, R. Zheng, and L. Liu, “A Distance-Based Method for Building an Encrypted Malware Traffic Identification Framework,” IEEE Access, vol. 7, pp. 100014–100028, 2019, doi: 10.1109/ACCESS.2019.2930717.
[11] B. Bataineh, “Fast Component Density Clustering in Spatial Databases: A Novel Algorithm,” Inf., vol. 13, no. 10, 2022, doi: 10.3390/info13100477.
[12] M. Hahsler, M. Piekenbrock, and D. Doran, “Dbscan: Fast density-based clustering with R,” J. Stat. Softw., vol. 91, no. 1, 2019, doi: 10.18637/jss.v091.i01.
[13] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure,” SIGMOD Rec. (ACM Spec. Interes. Gr. Manag. Data), vol. 28, no. 2, pp. 49–60, 1999, doi: 10.1145/304181.304187.
[14] M. A. Ahmed, H. Baharin, and P. N. E. Nohuddin, “Analysis of K-means, DBSCAN and OPTICS Cluster algorithms on Al-Quran verses,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 8, pp. 248–254, 2020, doi: 10.14569/IJACSA.2020.0110832.

Downloads

Published

2023-06-30

Issue

Section

Articles

Citation Check