The Implementations of K-medoids Clustering for Higher Education Accreditation by Evaluation of Davies Bouldin Index Clustering

  • Ghufron Ghufron Diponegoro
  • Bayu Surarso Department of Mathematics, Diponegoro University, Semarang, Indonesia
  • Rahmat Gernowo Department of Physics, Diponegoro University, Semarang, Indonesia


The need for data analysis in tertiary education every semester is needed, this is due to the increasingly large and uncontrolled data, on the other hand generally higher education does not yet have a data warehouse and big data analysis to maintain data quality at tertiary institutions is not easy, especially to estimate the results of university accreditation high, because the data continues to grow and is not controlled, the purpose of this study is to apply k-medoids clustering by applying the calculation of the weighting matrix of higher education accreditation with the data of the last 3 years namely length of study, average GPA, student and lecturer ratio and the number of lecturers according to the study program, so that it can predict accurate cluster results, the results of this study indicate that k-medoid clustering produces good cluster data results with an evaluation value of the Bouldin index davies cluster index of 0.407029478 and is said to be a good cluster result.


Download data is not yet available.


[1] P. A. Dover, “Creating learning solutions for executive education programs,” Int. J. Manag. Educ., p. 12, 2018.
[2] BAN-PT, “Peraturan BAN-PT No.59Th 2018 Instrumen APT,” Oct-2018.
[3] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Comput. Sci., vol. 55, pp. 1031–1039, 2015, doi: 10.1016/j.procs.2015.07.061.
[4] W. Jemaa, P. J. Carew, and L. Stapleton, “Implementing Effective Information Control Systems for Primary Education Support in Developing Countries: An Investigative Field Study of a Voluntary Non-Profit Organisation in Tunisia,” IFAC-Pap., vol. 51, no. 30, pp. 171–176, 2018, doi: 10.1016/j.ifacol.2018.11.281.
[5] L. W. Santoso and Yulia, “Data Warehouse with Big Data Technology for Higher Education,” Procedia Comput. Sci., vol. 124, pp. 93–99, 2017, doi: 10.1016/j.procs.2017.12.134.
[6] Z. Ouaret, D. Boukraa, O. Boussaid, and R. Chalal, “AuMixDw: Towards an automated hybrid approach for building XML data warehouses,” Data Knowl. Eng., vol. 120, no. January, pp. 60–82, 2019, doi: 10.1016/j.datak.2019.01.004.
[7] B. Boulekrouche, N. Jabeur, and Z. Alimazighi, “An Intelligent ETL Grid-Based Solution to Enable Spatial Data Warehouse Deployment in Cyber Physical System Context,” Procedia - Procedia Comput. Sci., vol. 56, no. MobiSPC, pp. 111–118, 2015, doi: 10.1016/j.procs.2015.07.176.
[8] E. Turban, J. E. Aronson, and T.-P. Liang, “Decision Support Systems and Business Intelligence,” Decis. Support Bus. Intell. Syst. 7E, 2007, doi: 10.1017/CBO9781107415324.004.
[9] W. Hadi, N. El-Khalili, M. AlNashashibi, G. Issa, and A. A. AlBanna, “Application of data mining algorithms for improving stress prediction of automobile drivers: A case study in Jordan,” Comput. Biol. Med., vol. 114, no. July, p. 103474, 2019, doi: 10.1016/j.compbiomed.2019.103474.
[10] P. Prihandoko and B. Bertalya, “a Data Analysis of the Impact of Natural Disaster Using K-Means Clustering Algorithm,” Kursor, vol. 8, no. 4, p. 169, 2017, doi: 10.28961/kursor.v8i4.109.
[11] S. M. Razavi Zadegan, M. Mirzaie, and F. Sadoughi, “Ranked k-medoids: A fast and accurate rank-based partitioning algorithm for clustering large datasets,” Knowl.-Based Syst., vol. 39, pp. 133–143, 2013, doi: 10.1016/j.knosys.2012.10.012.
[12] D. Sun, H. Fei, and Q. Li, “A Bisecting K-Medoids clustering Algorithm Based on Cloud Model,” IFAC-Pap., vol. 51, no. 11, pp. 308–315, 2018, doi: 10.1016/j.ifacol.2018.08.301.
[13] J. Han, M. Kamber, and Jian Pei, Data Mining Concepts and Techniques, 2nd ed. 2012.
[14] I. C. Dewi, B. Y. Gautama, and P. A. Mertasana, “Analysis of Clustering for Grouping of Productive Industry by K-Medoid Method,” Int. J. Eng. Emerg. Technol., vol. 2, no. 1, p. 26, 2017, doi: 10.24843/ijeet.2017.v02.i01.p06.
[15] A. Bates and J. Kalita, “Counting clusters in twitter posts,” ACM Int. Conf. Proceeding Ser., vol. 04-05-Marc, 2016, doi: 10.1145/2905055.2905295.
[16] S. Harikumar and P. V. Surya, “K-Medoid Clustering for Heterogeneous DataSets,” Procedia Comput. Sci., vol. 70, pp. 226–237, 2015, doi: 10.1016/j.procs.2015.10.077.
[17] S. O. Salinas, “DATA WAREHOUSE AND BIG DATA INTEGRATION Sonia,” Int. J. Comput. Sci. Inf. Technol., vol. 9, no. 2, pp. 1–17, 2017, doi: 10.5121/ijcsit.2017.9201.
[18] D. F. Pramesti, M. T. Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot),” p. 10.
[19] C. M. R. do Carmo and T. H. Christensen, “Cluster analysis of residential heat load profiles and the role of technical and household characteristics,” Energy Build., vol. 125, pp. 171–180, Aug. 2016, doi: 10.1016/j.enbuild.2016.04.079.
[20] Y. Feng, R. C. Affonso, and M. Zolghadri, “Analysis of bike sharing system by clustering: the Vélib’ case,” IFAC-Pap., vol. 50, no. 1, pp. 12422–12427, Jul. 2017, doi: 10.1016/j.ifacol.2017.08.2430.
How to Cite
GHUFRON, Ghufron; SURARSO, Bayu; GERNOWO, Rahmat. The Implementations of K-medoids Clustering for Higher Education Accreditation by Evaluation of Davies Bouldin Index Clustering. Jurnal Ilmiah Kursor, [S.l.], v. 10, n. 3, july 2020. ISSN 2301-6914. Available at: <>. Date accessed: 27 june 2022. doi: