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Abstract

Anomaly detection in time series data is essential, especially when dealing with
imbalanced datasets such as air quality records. This study addresses the challenge of
identifying point anomalies rare and extreme pollution levels within a highly
imbalanced dataset. Failing to detect such anomalies may lead to delayed
environmental interventions and poor public health responses. To solve this, we propose
a comparative analysis of three unsupervised learning methods: K-means clustering,
Isolation Forest (IForest), and Autoencoder (AE), including its LSTM variant. These
algorithms are applied to monthly air quality data collected in 2023 from 2,110 cities
across Asia. The models are evaluated using Area Under the Curve (AUC), Precision,
Recall, and Fl-score to assess their effectiveness in detecting anomalies. Results
indicate that the Autoencoder and Autoencoder LSTM outperform the others with an
AUC of 98.23%, followed by K-means (97.78%) and I[Forest (96.01%). The
Autoencoder’s reconstruction capability makes it highly effective for capturing complex
temporal patterns. K-means and [Forest also show strong results, offering efficient and
interpretable solutions for structured data. This research highlights the potential of
unsupervised anomaly detection techniques for environmental monitoring and provides
practical insights into handling imbalanced time series data.
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INTRODUCTION monthly, weekly, and daily frequencies[4].
Each observation in a time series presents
Nowadays,  technology = has  made . . . .
. _ . information  obtained  from  previous
breakthroughs in data collection in various . . .
observations, thus enabling analysis of

research fields, allowing the collection of large
amounts of data over time. Thus, this
technology contributes to forming time series
data[1]. In clustering issues, time series data is
one of the most common data types. It is also
frequently utilized in biology for gene
expression data and in finance for stock market
analysis[2]. This data reflects time that changes
periodically and sequentially[3]. The most
commonly used series are annual, quarterly,
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historical patterns and prediction of future
values[5], [6]. A deep understanding of these
data characteristics is helpful in analysis, but a
big challenge arises when identifying
anomalies among standard patterns.

Anomaly detection in time series data has
become a significant challenge in modern data
analysis, which focuses on identifying patterns
or observations that deviate from the general
characteristics of the majority of the data[7].
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As values or observations differ significantly
from the normal pattern in a dataset, anomalies
are often identified as outliers that can affect the
normality of the data and thus require special
attention[8], [9]. This phenomenon can arise in
a variety of contexts and is commonly caused
by measurement errors, human error,
mechanical errors, or technical problems[10],
[11]. Moreover, anomalies can also indicate
unusual events, such as operational disruptions,
changes in environmental patterns, or
unexpected incidents[12]. Anomaly
identification is not only important for
detecting deviations but also has the potential to
provide critical insights into system
understanding and development.

However, detecting anomalies is not simple,
especially in real-world time series data, which
often has imbalanced characteristics. In this
condition, anomalous events only cover a small
portion of the entire dataset[13]. This
imbalance can cause the model to tend to ignore
the minority patterns (anomalous data), thus
reducing the model's ability to recognize
anomalies effectively [14], [15].

In various fields such as environmental
monitoring, anomalies like extreme spikes in
air pollution levels are rare and often obscured
by the dominant normal patterns. This anomaly
is known as a point anomaly, when a single data
point is very different from other data points
within a certain time frame or its general
pattern[16]. Point anomaly can indicate
significant and rare environmental events,
equipment failures, or data recording errors. If
undetected, these anomalies can cause delays in
environmental policy responses and public
health interventions.

Unsupervised learning approaches have
evolved as the leading solution to overcome
these challenges[17]. These methods do not
require label data, making them well-suited for
situations where manual labeling is difficult or
expensive[18]. Various algorithms, including
K-means, Isolation Forest, and Autoencoder,
have unique approaches to capturing patterns
and identifying aberrant data. However, their
effectiveness is highly dependent on the
characteristics of the dataset and the underlying
assumptions.

Previous research has shown the
effectiveness of unsupervised learning methods
in detecting anomalies in industrial processes,
particularly in screw-tightening data. The study
by West et al. (2023)[19] used K-means

clustering with Dynamic Time Warping (DTW)
to detect anomalies in the wunbalanced
automotive industry assembly process, while
Ribeiro et al. (2021)[20] compared the
performance of Autoencoder and Isolation
Forest in detecting anomaly in torque-angle
pairs during the tightening process. Although
both made significant contributions, their
approaches are still limited to the
manufacturing domain with mechanical sensor
data, and they focus on a single type of method
or a specific domain.

On the other hand, research by Wei et al.
(2022)[21] applied an unsupervised deep
learning-based approach using a combination
of Long Short-Term Memory (LSTM) and
Autoencoder to detect anomalies in indoor air
quality data (CO2). This model is designed to
capture long-term dependencies in time series
data and calculate reconstruction errors to
identify anomalies. The study demonstrated
excellent performance and proved that
unsupervised methods effectively identify
abnormal values in air quality time series data,
even without labeled data. These findings
affirm the potential of Autoencoder methods
and other unsupervised techniques in
environmental monitoring and serve as an
important foundation for the development of
more adaptive alternative approaches.

In this study, the researchers addressed the
issue of point anomaly detection in imbalanced
time series data, with a real case study
involving air quality data from 2110 cities in
Asia in 2023. The data contains the average air
quality values collected each month, thus
forming a representation of a monthly scaled
time series. This data not only reflects the
challenges of analyzing complex
environmental data but also provides a real
example of the importance of anomaly
detection in supporting sustainable air pollution
monitoring systems.

To address this challenge, a comparative
study was conducted on three unsupervised
learning  methods: K-means clustering,
Isolation Forest (IForest), and Autoencoder
(AE), including its LSTM variant. These three
methods were chosen because of their ability to
detect abnormal patterns without requiring
labeled data, which is generally not available in
environmental datasets. The evaluation was
conducted using four main metrics, namely
AUC, Precision, Recall, and Fl-score. With
this approach, this research is expected to make
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a significant contribution to supporting
environmental data analysis and anomaly
detection systems for better decision-making.

MATERIAL AND METHODS

This research uses the 2023 Asian air quality
data, including monthly air quality averages in
2110 cities. The data consists of attributes such
as rank, year, and monthly values from January
to December. Because this research falls within
the domain of environmental monitoring, its
main objective is to identify abnormal pollution
levels that may  reflect real-world
environmental anomalies.

This dataset reflects the characteristics of an
imbalanced time series, where anomaly values
are rare occurrences compared to the overall
data. In this context, the type of anomaly
detected is a point anomaly, which are
individual values that significantly deviate from
the general pattern. These anomalies can
indicate extreme pollution events, data
recording errors, or unusual local conditions.

Prepocessing Data

Application of Anomaly
Detection Methods

] v ¥
[K’-man:] [ IForest ] [ Autpencoder ]
[ i I
Output
/Mbdel Evaluation Results /

Fig. 1. Flowchart of the research

The process begins with preparing air
quality data in Asia, which will be used as the
research dataset. The dataset then went through
a preprocessing stage, where data cleaning was
done to address missing values and reduce
simple  outliers. In  addition, data
standardization =~ was  performed  using
RobustScaler, and the stationarity test process
was conducted using the Augmented Dickey-
Fuller (ADF) Test. Next, anomaly detection is
performed by applying three main methods: K-
means to cluster data based on feature

similarity, Isolation Forest to identify easily
isolated data as outliers, and Autoencoder,
which utilizes neural networks to reconstruct
standard data and detect anomalies through
reconstruction errors. The results of these three
methods are evaluated using metrics such as
AUC, precision, recall, and Fl-score for
unsupervised learning to measure the
performance of each method in detecting
anomalies. Fig. 1. shows the research flow
chart.

Preprocessing Data

Preprocessing steps were performed to
ensure data quality as follows:

1 Handling missing values: Using the cubic
interpolation method to replace missing
values.

2 Differencing to make the data stationary

3 Data standardization with RobustScaler

Anomaly Detection Methods

This research uses three unsupervised learning

algorithms to detect anomalies:

1. K-means Clustering: A  clustering
algorithm that divides data into k clusters
based on the proximity of each object to
the cluster center (centroid)[22]. The
distance between data and k centroids is
calculated using the Euclidean
distance[23], formulated in Equation (1).

dij= ,/27&1(%1« - Cjk)z (D

In the equation, d;; represents the
Euclidean distance between object i and
cluster center j, x;  is the k attribute value
of object i, ¢j is the k attribute value of
cluster center j, and n is the total number
of attributes. This distance becomes the
basis for determining whether data is
closer to a particular cluster center or
further away from the center, which may
indicate an anomaly.

2. Isolation Forest: A decision tree-based
algorithm isolates data points using
random division[24]. Faster isolated
points are considered anomalies. The score
is based on the average path length h(x) to
isolate data points in all isolation trees.
The parameter c(x) is used to normalise
the path length based on the data size, so
the anomaly score can be calculated using
the function s(x) in Equation (2).
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s(x) =2 <« (2)
3. Autoencoder: An artificial neural network
designed to reconstruct data. Anomalies
are identified based on high reconstruction
errors. The two primary parts of an
autoencoder are the encoder and the
decoder[25]. The encoder reduces the
dimension of the input data to produce a
compressed representation of the data,
while the decoder reconstructs the data
from the compressed representation. The
calculations for the encoder, decoder, and
reconstruction  error  functions  are
described in equations (3) to (5):

Encoder:
h=f(Wx+b) 3)
Decoder:
Z=f'Wh+b) 4)

Reconstruction error:

A= f,(x,%) Q)

In this process, x represents the original
input data, h is the output of the hidden
layer, f and f' represent the encoding and
decoding functions, respectively. At the
same time, f; is used to calculate the
reconstruction error. In addition, 4
represents the reconstruction error value,
W and W' are weight matrices, b and b’
are bias vectors, and X represents the
reconstructed data

Performance Evaluation

The performance evaluation of the anomaly
detection model is performed using the
confusion matrix, which describes the model's
performance in terms of correct and incorrect
predictions in two classes: anomalous and
normal. The confusion matrix consists of four
main components:

- True Positives (TP), which indicates the
number of anomalies that are detected as
anomalies.

- False Positives (FP), which indicates the
number of normal data misclassified as
anomaly.

- False Negatives (FN), indicates the
number of anomalies that were not
detected and classified as normal

- True Negatives (TN), indicates the amount
of normal data classified as normal.

After analyzing the confusion matrix, we
continue with a discussion of the main
performance metrics used to evaluate the
model, namely:

- AUC (Area Under Curve): Measures the
ability of the model to distinguish between
positive and negative classes.

- Precision: Measures the ability of the
model to detect specific anomalies.

Precision = —— (6)
TP+FP

- Recall (Sensitivity): Measures the ability
of the model to detect all anomalies.

Recall = —~ (7

TP+FN

- Fl-score: Harmony between precision and
recall to provide an overall performance
picture.

PrecisionxRecall
Fl—score =2 X ——M (8)
Precision+Recall

RESULT AND DISCUSSION

Data Description

Exploratory data analysis revealed seasonal
patterns in the air quality data, with anomalies
indicating rare and extreme pollutant levels.
Descriptive  statistics and  visualisations
highlighted the dataset's imbalance (see Table

1).

Table 1. Average descriptive statistics table

Rata-Rata

count 2164

mean 23.3052
std 16.1439
min 1.475

25% 10.0729
50% 19.1042
75% 31.4021
max 124917

Table 1 shows that from the data, it can be
seen that air pollution in cities has a significant
variation, ranging from 1,475 to 124,917. There
is a significant difference between the cities
with the highest and lowest pollution. Next, we
will conduct a stationarity test to see if this data
has a trend or seasonal pattern.

Stationarity Test

The Augmented Dickey-Fuller (ADF) test was
conducted to test the stationarity of the data.
The ADF test results in Fig. 2. show that the
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data is not stationary, as the ADF Statistic
(0.878) is more significant than all critical
values (both at 1%, 5%, and 10%), and the p-
value (0.993) is much greater than 0.05.

ADF Statistic: ©.8783632915177038
p-value: ©.9928013642123126
Critical Values:
1%: -3.43341372125%98194
5%: -2.8628934347449833
10%: -2.567490502788733

Fig. 2. ADF test results

Determining the Optimum Number of
Clusters

Determining the optimum number of
clusters is an important step in clustering
methods to ensure representative results of the
data being analyzed. In this study, two main
methods, the Elbow Method and the Silhouette
Score, were used to evaluate the most
appropriate number of clusters. Fig. 3. shows
the results of the Elbow Method, while Fig. 4.
illustrates the evaluation results using
Silhouette Score.

Elbow Method for Optimal k
160,000
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120,000
100,000

80,000

inertia
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2 2 4 5 ] 7 2 a 10
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Fig. 3. Elbow method

In Fig. 3. the Elbow Method determines the
optimum number of clusters based on the
inertia value (sum of squared distances from
points to cluster centers). The ‘elbow’ point on
the graph shows a significant decrease in inertia
before stabilizing, indicating the optimum
number of clusters, k = 3.

Fig. 4. shows the evaluation results using the
Silhouette Score, which measures how well the
objects fit within their respective clusters. The
highest Silhouette Score value is achieved at
k = 3, indicating that the division of clusters at
this point produces the most optimal cluster
structure. Both methods consistently determine

the optimum number of clusters, which is k =
3, so these results are used in further analyses.

Silhouette Score for Optimal k
1.0

0.9+

0.8

silhouette _score
=
n

0.0

n_clusters
Fig. 4. Silhouette score
Anomaly Detection

Anomaly detection is an important part of
data analysis to identify values that deviate
significantly from the general pattern. In this
study, the number of anomalies detected was
compared using three different methods: K-
Means, Isolation Forest (Iforest), Autoencoder
(AE) and Autoencoder LSTM (AE LSTM).
Fig. 5. presents the comparison results of the
number of anomalies detected by each method.

NUMBER OF ANOMALY

AE LSTM sttt e e o
AE i g
Tforest  mummmmmmmmmIIm

K-Means  mummm i
100 102 104 106 108 110

Fig. 5. Number of anomaly

Based on the visualisation in Fig. 5. the K-
Means method detected 108 anomalies, while
Iforest detected 104. On the other hand, AE and
AE LSTM produced the same number of
anomalies, 109. This difference in the number
of anomalies detected by each method indicates
that different approaches have varying
sensitivity to patterns and irregularities in the
data.

Model Performance

To provide a more in-depth look at the
performance of each model, the confusion
matrix in Fig. 6. shows the distribution of
correct and incorrect predictions for the normal
and anomaly classes.
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Fig. 6. Confusion matrix

After analyzing the confusion matrix, we
proceed to discuss the main performance
metrics used to evaluate the models, namely
AUC, precision, recall, and F1-score. Table 2
summarises the performance metric values for
each of the tested models. Autoencoder
achieved the highest AUC and F1 score,
followed by K-means and Isolation Forest.

Table 2. Matrix evaluation

Metode auc  Preast o pecan  F1
on Score
K-Means 0,9778 1 0,9557 09773
IForest 0,9601 1 0,9203  0,9585
Autoencoder  0,9823 1 0,9646 0,9819
Autoencoder
LSTM 0,9823 1 0,9646 09819

Each model has outstanding performance,
as shown in Table 2. The autoencoder has the
highest AUC value of 0.9823, demonstrating its
best ability to capture complex temporal
patterns and non-linear relationships in air
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