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Abstract 

 
Anomaly detection in time series data is essential, especially when dealing with 

imbalanced datasets such as air quality records. This study addresses the challenge of 

identifying point anomalies rare and extreme pollution levels within a highly 

imbalanced dataset. Failing to detect such anomalies may lead to delayed 

environmental interventions and poor public health responses. To solve this, we propose 

a comparative analysis of three unsupervised learning methods: K-means clustering, 

Isolation Forest (IForest), and Autoencoder (AE), including its LSTM variant. These 

algorithms are applied to monthly air quality data collected in 2023 from 2,110 cities 

across Asia. The models are evaluated using Area Under the Curve (AUC), Precision, 

Recall, and F1-score to assess their effectiveness in detecting anomalies. Results 

indicate that the Autoencoder and Autoencoder LSTM outperform the others with an 

AUC of 98.23%, followed by K-means (97.78%) and IForest (96.01%). The 

Autoencoder’s reconstruction capability makes it highly effective for capturing complex 

temporal patterns. K-means and IForest also show strong results, offering efficient and 

interpretable solutions for structured data. This research highlights the potential of 

unsupervised anomaly detection techniques for environmental monitoring and provides 

practical insights into handling imbalanced time series data.          

Key words: Anomaly detection, Autoencoder, Imbalance data, Isolation Forest, and K-

means. 

 

 

INTRODUCTION 

Nowadays, technology has made 

breakthroughs in data collection in various 

research fields, allowing the collection of large 

amounts of data over time. Thus, this 

technology contributes to forming time series 

data[1]. In clustering issues, time series data is 

one of the most common data types. It is also 

frequently utilized in biology for gene 

expression data and in finance for stock market 

analysis[2]. This data reflects time that changes 

periodically and sequentially[3]. The most 

commonly used series are annual, quarterly, 

monthly, weekly, and daily frequencies[4]. 

Each observation in a time series presents 

information obtained from previous 

observations, thus enabling analysis of 

historical patterns and prediction of future 

values[5], [6]. A deep understanding of these 

data characteristics is helpful in analysis, but a 

big challenge arises when identifying 

anomalies among standard patterns. 

Anomaly detection in time series data has 

become a significant challenge in modern data 

analysis, which focuses on identifying patterns 

or observations that deviate from the general 

characteristics of the majority of the data[7]. 
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As values or observations differ significantly 

from the normal pattern in a dataset, anomalies 

are often identified as outliers that can affect the 

normality of the data and thus require special 

attention[8], [9]. This phenomenon can arise in 

a variety of contexts and is commonly caused 

by measurement errors, human error, 

mechanical errors, or technical problems[10], 

[11]. Moreover, anomalies can also indicate 

unusual events, such as operational disruptions, 

changes in environmental patterns, or 

unexpected incidents[12]. Anomaly 

identification is not only important for 

detecting deviations but also has the potential to 

provide critical insights into system 

understanding and development. 

However, detecting anomalies is not simple, 

especially in real-world time series data, which 

often has imbalanced characteristics. In this 

condition, anomalous events only cover a small 

portion of the entire dataset[13]. This 

imbalance can cause the model to tend to ignore 

the minority patterns (anomalous data), thus 

reducing the model's ability to recognize 

anomalies effectively [14], [15]. 

In various fields such as environmental 

monitoring, anomalies like extreme spikes in 

air pollution levels are rare and often obscured 

by the dominant normal patterns. This anomaly 

is known as a point anomaly, when a single data 

point is very different from other data points 

within a certain time frame or its general 

pattern[16]. Point anomaly can indicate 

significant and rare environmental events, 

equipment failures, or data recording errors. If 

undetected, these anomalies can cause delays in 

environmental policy responses and public 

health interventions. 

Unsupervised learning approaches have 

evolved as the leading solution to overcome 

these challenges[17]. These methods do not 

require label data, making them well-suited for 

situations where manual labeling is difficult or 

expensive[18]. Various algorithms, including 

K-means, Isolation Forest, and Autoencoder, 

have unique approaches to capturing patterns 

and identifying aberrant data. However, their 

effectiveness is highly dependent on the 

characteristics of the dataset and the underlying 

assumptions. 

Previous research has shown the 

effectiveness of unsupervised learning methods 

in detecting anomalies in industrial processes, 

particularly in screw-tightening data. The study 

by West et al. (2023)[19] used K-means 

clustering with Dynamic Time Warping (DTW) 

to detect anomalies in the unbalanced 

automotive industry assembly process, while 

Ribeiro et al. (2021)[20] compared the 

performance of Autoencoder and Isolation 

Forest in detecting anomaly in torque-angle 

pairs during the tightening process. Although 

both made significant contributions, their 

approaches are still limited to the 

manufacturing domain with mechanical sensor 

data, and they focus on a single type of method 

or a specific domain. 

On the other hand, research by Wei et al. 

(2022)[21] applied an unsupervised deep 

learning-based approach using a combination 

of Long Short-Term Memory (LSTM) and 

Autoencoder to detect anomalies in indoor air 

quality data (CO2). This model is designed to 

capture long-term dependencies in time series 

data and calculate reconstruction errors to 

identify anomalies. The study demonstrated 

excellent performance and proved that 

unsupervised methods effectively identify 

abnormal values in air quality time series data, 

even without labeled data. These findings 

affirm the potential of Autoencoder methods 

and other unsupervised techniques in 

environmental monitoring and serve as an 

important foundation for the development of 

more adaptive alternative approaches. 

In this study, the researchers addressed the 

issue of point anomaly detection in imbalanced 

time series data, with a real case study 

involving air quality data from 2110 cities in 

Asia in 2023. The data contains the average air 

quality values collected each month, thus 

forming a representation of a monthly scaled 

time series. This data not only reflects the 

challenges of analyzing complex 

environmental data but also provides a real 

example of the importance of anomaly 

detection in supporting sustainable air pollution 

monitoring systems. 

To address this challenge, a comparative 

study was conducted on three unsupervised 

learning methods: K-means clustering, 

Isolation Forest (IForest), and Autoencoder 

(AE), including its LSTM variant. These three 

methods were chosen because of their ability to 

detect abnormal patterns without requiring 

labeled data, which is generally not available in 

environmental datasets. The evaluation was 

conducted using four main metrics, namely 

AUC, Precision, Recall, and F1-score. With 

this approach, this research is expected to make 
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a significant contribution to supporting 

environmental data analysis and anomaly 

detection systems for better decision-making. 

MATERIAL AND METHODS 

This research uses the 2023 Asian air quality 

data, including monthly air quality averages in 

2110 cities. The data consists of attributes such 

as rank, year, and monthly values from January 

to December. Because this research falls within 

the domain of environmental monitoring, its 

main objective is to identify abnormal pollution 

levels that may reflect real-world 

environmental anomalies. 

This dataset reflects the characteristics of an 

imbalanced time series, where anomaly values 

are rare occurrences compared to the overall 

data. In this context, the type of anomaly 

detected is a point anomaly, which are 

individual values that significantly deviate from 

the general pattern. These anomalies can 

indicate extreme pollution events, data 

recording errors, or unusual local conditions. 

 

Fig. 1. Flowchart of the research 

 

The process begins with preparing air 

quality data in Asia, which will be used as the 

research dataset. The dataset then went through 

a preprocessing stage, where data cleaning was 

done to address missing values and reduce 

simple outliers. In addition, data 

standardization was performed using 

RobustScaler, and the stationarity test process 

was conducted using the Augmented Dickey-

Fuller (ADF) Test. Next, anomaly detection is 

performed by applying three main methods: K-

means to cluster data based on feature 

similarity, Isolation Forest to identify easily 

isolated data as outliers, and Autoencoder, 

which utilizes neural networks to reconstruct 

standard data and detect anomalies through 

reconstruction errors. The results of these three 

methods are evaluated using metrics such as 

AUC, precision, recall, and F1-score for 

unsupervised learning to measure the 

performance of each method in detecting 

anomalies. Fig. 1. shows the research flow 

chart. 

Preprocessing Data  

Preprocessing steps were performed to 

ensure data quality as follows: 

1 Handling missing values: Using the cubic 

interpolation method to replace missing 

values. 

2 Differencing to make the data stationary 

3 Data standardization with RobustScaler 

Anomaly Detection Methods  

This research uses three unsupervised learning 

algorithms to detect anomalies: 

1. K-means Clustering: A clustering 

algorithm that divides data into 𝑘 clusters 

based on the proximity of each object to 

the cluster center (centroid)[22]. The 

distance between data and 𝑘 centroids is 

calculated using the Euclidean 

distance[23], formulated in Equation (1). 

𝑑𝑖,𝑗 = √∑ (𝑥𝑖𝑘 − 𝑐𝑗𝑘)
2𝑛

𝑘=1            (1) 

In the equation, 𝑑𝑖,𝑗 represents the 

Euclidean distance between object 𝑖 and 

cluster center 𝑗, 𝑥𝑖,𝑘 is the 𝑘 attribute value 

of object 𝑖, 𝑐𝑗,𝑘 is the 𝑘 attribute value of 

cluster center 𝑗, and 𝑛 is the total number 

of attributes. This distance becomes the 

basis for determining whether data is 

closer to a particular cluster center or 

further away from the center, which may 

indicate an anomaly. 

2. Isolation Forest: A decision tree-based 

algorithm isolates data points using 

random division[24]. Faster isolated 

points are considered anomalies. The score 

is based on the average path length ℎ(𝑥) to 

isolate data points in all isolation trees. 

The parameter 𝑐(𝑥) is used to normalise 

the path length based on the data size, so 

the anomaly score can be calculated using 

the function 𝑠(𝑥) in Equation (2). 
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𝑠(𝑥) = 2
−
ℎ(𝑥)

𝑐(𝑛)              (2) 

3. Autoencoder: An artificial neural network 

designed to reconstruct data. Anomalies 

are identified based on high reconstruction 

errors. The two primary parts of an 

autoencoder are the encoder and the 

decoder[25]. The encoder reduces the 

dimension of the input data to produce a 

compressed representation of the data, 

while the decoder reconstructs the data 

from the compressed representation. The 

calculations for the encoder, decoder, and 

reconstruction error functions are 

described in equations (3) to (5): 

Encoder: 

ℎ = 𝑓(𝑊𝑥 + 𝑏)            (3) 

Decoder: 

𝑥̂ = 𝑓′(𝑊′ℎ + 𝑏)            (4) 

Reconstruction error: 

𝛥 = 𝑓1(𝑥, 𝑥̂)              (5) 

In this process, 𝑥 represents the original 

input data, ℎ is the output of the hidden 

layer, 𝑓 and 𝑓′  represent the encoding and 

decoding functions, respectively. At the 

same time, 𝑓1 is used to calculate the 

reconstruction error. In addition, 𝛥 

represents the reconstruction error value, 

𝑊 and 𝑊′  are weight matrices, 𝑏 and 𝑏′ 
are bias vectors, and 𝑥 represents the 

reconstructed data 

Performance Evaluation  

The performance evaluation of the anomaly 

detection model is performed using the 

confusion matrix, which describes the model's 

performance in terms of correct and incorrect 

predictions in two classes: anomalous and 

normal. The confusion matrix consists of four 

main components:  

- True Positives (TP), which indicates the 

number of anomalies that are detected as 

anomalies. 

- False Positives (FP), which indicates the 

number of normal data misclassified as 

anomaly. 

- False Negatives (FN), indicates the 

number of anomalies that were not 

detected and classified as normal 

- True Negatives (TN), indicates the amount 

of normal data classified as normal.  

After analyzing the confusion matrix, we 

continue with a discussion of the main 

performance metrics used to evaluate the 

model, namely: 

- AUC (Area Under Curve): Measures the 

ability of the model to distinguish between 

positive and negative classes. 

- Precision: Measures the ability of the 

model to detect specific anomalies. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (6) 

- Recall (Sensitivity): Measures the ability 

of the model to detect all anomalies. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (7) 

- F1-score: Harmony between precision and 

recall to provide an overall performance 

picture. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (8) 

RESULT AND DISCUSSION  

Data Description 

Exploratory data analysis revealed seasonal 

patterns in the air quality data, with anomalies 

indicating rare and extreme pollutant levels. 

Descriptive statistics and visualisations 

highlighted the dataset's imbalance (see Table 

1). 

Table 1.  Average descriptive statistics table    

 Rata-Rata 

count 2164 

mean 23.3052 

std 16.1439 

min 1.475 

25% 10.0729 

50% 19.1042 

75% 31.4021 

max 124.917 

 

Table 1 shows that from the data, it can be 

seen that air pollution in cities has a significant 

variation, ranging from 1,475 to 124,917. There 

is a significant difference between the cities 

with the highest and lowest pollution. Next, we 

will conduct a stationarity test to see if this data 

has a trend or seasonal pattern. 

Stationarity Test  

The Augmented Dickey-Fuller (ADF) test was 

conducted to test the stationarity of the data. 

The ADF test results in Fig. 2. show that the 



Riza A. H., Aris T., & Sugiyarto S., Comparative study of unsupervised anomaly... 60 
 

 

 

data is not stationary, as the ADF Statistic 

(0.878) is more significant than all critical 

values (both at 1%, 5%, and 10%), and the p-

value (0.993) is much greater than 0.05. 

 

Fig. 2. ADF test results 

Determining the Optimum Number of 

Clusters   

Determining the optimum number of 

clusters is an important step in clustering 

methods to ensure representative results of the 

data being analyzed. In this study, two main 

methods, the Elbow Method and the Silhouette 

Score, were used to evaluate the most 

appropriate number of clusters. Fig. 3. shows 

the results of the Elbow Method, while Fig. 4. 

illustrates the evaluation results using 

Silhouette Score. 

 
 

Fig. 3. Elbow method 

 

In Fig. 3. the Elbow Method determines the 

optimum number of clusters based on the 

inertia value (sum of squared distances from 

points to cluster centers). The ‘elbow’ point on 

the graph shows a significant decrease in inertia 

before stabilizing, indicating the optimum 

number of clusters, 𝑘 = 3. 

Fig. 4. shows the evaluation results using the 

Silhouette Score, which measures how well the 

objects fit within their respective clusters. The 

highest Silhouette Score value is achieved at 

𝑘 = 3, indicating that the division of clusters at 

this point produces the most optimal cluster 

structure. Both methods consistently determine 

the optimum number of clusters, which is 𝑘 =
3, so these results are used in further analyses. 

 

 

 

 

 

  

 

 
Fig. 5. Number of anomaly 

 

Based on the visualisation in Fig. 5. the K-

Means method detected 108 anomalies, while 

Iforest detected 104. On the other hand, AE and 

AE LSTM produced the same number of 

anomalies, 109. This difference in the number 

of anomalies detected by each method indicates 

that different approaches have varying 

sensitivity to patterns and irregularities in the 

data. 

Model Performance   

To provide a more in-depth look at the 

performance of each model, the confusion 

matrix in Fig. 6. shows the distribution of 

correct and incorrect predictions for the normal 

and anomaly classes. 

100 102 104 106 108 110

K-Means

Iforest

AE

AE LSTM

N U M B E R O F  A N O M A L Y

Fig. 4. Silhouette  score

Anomaly Detection

  Anomaly  detection  is  an  important  part  of

data  analysis  to  identify  values  that  deviate

significantly  from  the  general  pattern.  In  this

study,  the  number  of  anomalies  detected  was

compared  using  three  different  methods:  K-

Means, Isolation Forest (Iforest), Autoencoder

(AE)  and  Autoencoder  LSTM  (AE  LSTM).

Fig.  5.  presents  the  comparison  results  of  the

number of anomalies detected by each method.
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Fig. 6. Confusion matrix  

 

After analyzing the confusion matrix, we 

proceed to discuss the main performance 

metrics used to evaluate the models, namely 

AUC, precision, recall, and F1-score. Table 2 

summarises the performance metric values for 

each of the tested models. Autoencoder 

achieved the highest AUC and F1 score, 

followed by K-means and Isolation Forest. 

Table 2.  Matrix evaluation 

Metode AUC 
Precisi

on 
Recall 

F-1 

Score 

K-Means 0,9778 1 0,9557 0,9773 

IForest 0,9601 1 0,9203 0,9585 

Autoencoder 0,9823 1 0, 9646 0,9819 

Autoencoder 

LSTM 
0,9823 1 0, 9646 0,9819 

 

Each model has outstanding performance, 

as shown in Table 2. The autoencoder has the 

highest AUC value of 0.9823, demonstrating its 

best ability to capture complex temporal 

patterns and non-linear relationships in air 

quality data thanks to its layered architecture. 

K-means performed well, showing its 

effectiveness with simpler distance-metrics-

based methodologies with an AUC of 0.9778. 

Isolation Forest effectively managed high-

dimensional time series data by achieving a 

competitive AUC of 0.9601. With no false 

positives, all models accurately detected the 

correct abnormalities, achieving a perfect 

precision value of 1.0. 

CONCLUSION  

This study compares the performance of K-

means, Isolation Forest, and Autoencoder in 

detecting anomalies in unbalanced air quality 

data. The results show that K-Means can 

distinguish normal and abnormal data with an 

accuracy of up to 97.78%, IForest with an 

accuracy of 96.01%, and AE and AE LSTM 

with an accuracy of up to 98.23%. These 

methods showed excellent results, with all 

anomaly detection accuracies above 90%, 

confirming the effectiveness of unsupervised 

learning methods in detecting anomalies in 

environmental datasets. 

Autoencoder and Autoencoder LSTM are 

the best-performing models for this task, as 

they have relatively high AUC and F1-score 

values. Autoencoder outperformed the other 

methods, demonstrating its robustness in 

handling complex patterns. These findings 

provide a basis for selecting appropriate 

anomaly detection methods for real-world 

applications, especially environmental 

monitoring. Future research can explore hybrid 

approaches to improve detection accuracy 

further. 

 

REFERENCES 
 

[1]  A. Blázquez-García, A. Conde, U. Mori, 

and J. A. Lozano, “A Review on 

Outlier/Anomaly Detection in Time 

Series Data,” ACM Comput. Surv., vol. 

54, no. 3, pp. 1–33, Apr. 2022, doi: 

10.1145/3444690. 

https://doi.org/10.1145/3444690  

[2]  S. Aghabozorgi, A. Seyed Shirkhorshidi, 

and T. Ying Wah, “Time-series 

clustering – A decade review,” Inf. Syst., 

vol. 53, pp. 16–38, Oct. 2015, doi: 

10.1016/j.is.2015.04.007. 

https://doi.org/10.1016/j.is.2015.04.007  

[3]  H. Rahadian, S. Bandong, A. 

Widyotriatmo, and E. Joelianto, “Image 

encoding selection based on Pearson 

correlation coefficient for time series 

anomaly detection,” Alex. Eng. J., vol. 

82, pp. 304–322, Nov. 2023, 

https://doi.org/10.1016/j.aej.2023.09.070 

. 

[4]  M. B. Shrestha and G. R. Bhatta, 

“Selecting appropriate methodological 

framework for time series data analysis,” 

J. Finance Data Sci., vol. 4, no. 2, pp. 71–

89, Jun. 2018, 

https://doi.org/10.1145/3444690
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.aej.2023.09.070


Riza A. H., Aris T., & Sugiyarto S., Comparative study of unsupervised anomaly... 62 
 

 

 

https://doi.org/10.1016/j.jfds.2017.11.00

1  

[5]  R. J. Hyndman and B. Rostami-Tabar, 

“Forecasting interrupted time series,” J. 

Oper. Res. Soc., pp. 1–14, Sep. 2024, 

https://doi.org/10.1080/01605682.2024.

2395315 . 

[6]  R. Kablaoui, I. Ahmad, S. Abed, and M. 

Awad, “Network traffic prediction by 

learning time series as images,” Eng. Sci. 

Technol. Int. J., vol. 55, p. 101754, Jul. 

2024, 

https://doi.org/10.1016/j.jestch.2024.101

754 . 

[7]  R. Rahman and H. Nurul, “Keamanan 

Jaringan Kecerdasan Buatan dan 

Implementasi Solusi Keaman,” Technol. 

Sci. Insights J., vol. 1, no. 1, pp. 33–36. 

[8]  E. A. Fadlilah, “Identifikasi Anomali 

Data Akademik Menggunakan Dbscan 

Outlier Detection,” Pros. Sains Nas. Dan 

Teknol., vol. 12, no. 1, pp. 336–342, Nov. 

2022, 

https://doi.org/10.36499/psnst.v12i1.701

2 . 

[9]  G. R. Baihaqi and Mulaab, “LONG 

SHORT-TERM MEMORY FOR 

PREDICTION OF WAVE HEIGHT 

AND WIND SPEED USING PROPHET 

FOR OUTLIERS,” J. Ilm. Kursor, vol. 

12, no. 2, pp. 59–68, Dec. 2023, doi: 

https://doi.org/10.21107/kursor.v12i2.35

1 . 

[10]  M. N. K. Sikder and F. A. Batarseh, 

“Outlier detection using AI: a survey,” in 

AI Assurance, Elsevier, 2023, pp. 231–

291. https://doi.org/10.1016/B978-0-32-

391919-7.00020-2 . 

[11]  G. Nassreddine, J. Younis, and T. Falahi, 

“Detecting Data Outliers with Machine 

Learning,” Al-Salam J. Eng. Technol., 

vol. 2, no. 2, pp. 152–164, May 2023, 
https://doi.org/10.55145/ajest.2023.02.0

2.018 . 

[12]  M. Čampulová, J. Michálek, P. Mikuška, 

and D. Bokal, “Nonparametric algorithm 

for identification of outliers in 

environmental data,” J. Chemom., vol. 

32, no. 5, p. e2997, May 2018, 

https://doi.org/10.1002/cem.2997 . 

[13]  D. Liang, J. Wang, W. Zhang, Y. Liu, L. 

Wang, and X. Zhao, “Tabular Data 

Anomaly Detection Based on Density 

Peak Clustering Algorithm,” in 2022 

International Conference on Big Data, 

Information and Computer Network 

(BDICN), Sanya, China: IEEE, Jan. 

2022, pp. 16–21. 

https://doi.org/10.1109/BDICN55575.20

22.00011 . 

[14]  [R. Baidya and H. Jeong, “Anomaly 

Detection in Time Series Data Using 

Reversible Instance Normalized 

Anomaly Transformer,” Sensors, vol. 23, 

no. 22, p. 9272, Nov. 2023, 
https://doi.org/10.3390/s23229272  . 

[15]  Q. Liu, P. Boniol, T. Palpanas, and J. 

Paparrizos, “Time-Series Anomaly 

Detection: Overview and New Trends,” 

Proc. VLDB Endow., vol. 17, no. 12, pp. 

4229–4232, Aug. 2024, 

https://doi.org/10.14778/3685800.36858

42 . 

[16]  J. Liu, D. Yang, K. Zhang, H. Gao, and J. 

Li, “Anomaly and change point detection 

for time series with concept drift,” World 

Wide Web, vol. 26, no. 5, pp. 3229–3252, 

Sep. 2023, 

https://doi.org/10.1007/s11280-023-

01181-z . 

[17]  Z. Z. Darban, G. I. Webb, S. Pan, C. C. 

Aggarwal, and M. Salehi, “Deep 

Learning for Time Series Anomaly 

Detection: A Survey,” ACM Comput. 

Surv., vol. 57, no. 1, pp. 1–42, Jan. 2025, 

https://doi.org/10.1145/3691338 . 

[18]  A. Priarone, U. Albertin, C. Cena, M. 

Martini, and M. Chiaberge, 

“Unsupervised Novelty Detection 

Methods Benchmarking with Wavelet 

Decomposition,” Sep. 11, 2024, arXiv: 

arXiv:2409.07135. 

https://doi.org/10.1109/ICSRS63046.20

24.10927428 . 

[19]  N. West, T. Schlegl, and J. Deuse, 

“Unsupervised anomaly detection in 

unbalanced time series data from screw 

driving processes using k-means 

clustering,” Procedia CIRP, vol. 120, pp. 

1185–1190, 2023, 

https://doi.org/10.1016/j.procir.2023.09.

146 . 

https://doi.org/10.1016/j.jfds.2017.11.001
https://doi.org/10.1016/j.jfds.2017.11.001
https://doi.org/10.1080/01605682.2024.2395315
https://doi.org/10.1080/01605682.2024.2395315
https://doi.org/10.1016/j.jestch.2024.101754
https://doi.org/10.1016/j.jestch.2024.101754
https://doi.org/10.36499/psnst.v12i1.7012
https://doi.org/10.36499/psnst.v12i1.7012
https://doi.org/10.21107/kursor.v12i2.351
https://doi.org/10.21107/kursor.v12i2.351
https://doi.org/10.1016/B978-0-32-391919-7.00020-2
https://doi.org/10.1016/B978-0-32-391919-7.00020-2
https://doi.org/10.55145/ajest.2023.02.02.018
https://doi.org/10.55145/ajest.2023.02.02.018
https://doi.org/10.1002/cem.2997
https://doi.org/10.1109/BDICN55575.2022.00011
https://doi.org/10.1109/BDICN55575.2022.00011
https://doi.org/10.3390/s23229272
https://doi.org/10.14778/3685800.3685842
https://doi.org/10.14778/3685800.3685842
https://doi.org/10.1007/s11280-023-01181-z
https://doi.org/10.1007/s11280-023-01181-z
https://doi.org/10.1145/3691338
https://doi.org/10.1109/ICSRS63046.2024.10927428
https://doi.org/10.1109/ICSRS63046.2024.10927428
https://doi.org/10.1016/j.procir.2023.09.146
https://doi.org/10.1016/j.procir.2023.09.146


63 Jurnal Ilmiah KURSOR, Vol. 13, No. 2, Desember 2025, hal 56 - 63 

 

 

 

[20]  D. Ribeiro, L. M. Matos, P. Cortez, G. 

Moreira, and A. Pilastri, “A Comparison 

of Anomaly Detection Methods for 

Industrial Screw Tightening,” in 

Computational Science and Its 

Applications – ICCSA 2021, vol. 12950, 

O. Gervasi, B. Murgante, S. Misra, C. 

Garau, I. Blečić, D. Taniar, B. O. 

Apduhan, A. M. A. C. Rocha, E. 

Tarantino, and C. M. Torre, Eds., in 

Lecture Notes in Computer Science, vol. 

12950. , Cham: Springer International 

Publishing, 2021, pp. 485–500.  

https://doi.org/10.1016/j.aej.2023.09.070 

.  

[21]  Y. Wei, J. Jang-Jaccard, W. Xu, F. 

Sabrina, S. Camtepe, and M. Boulic, 

“LSTM-Autoencoder based Anomaly 

Detection for Indoor Air Quality Time 

Series Data,” Apr. 14, 2022, arXiv: 

arXiv:2204.06701. 

https://doi.org/10.1109/JSEN.2022.3230

361 . 

[22]  Y. Pratama, E. Sulistianingsih, N. N. 

Debataraja, and N. Imro’ah, “K-Means 

Clustering dan Mean Variance Efficient 

Portfolio dalam Portofolio Saham,” 

Jambura J. Probab. Stat., vol. 5, no. 1, pp. 

24–30, Jun. 2024, 

https://doi.org/10.37905/jjps.v5i1.20298 

. 

[23]  I. M. S. Bimantara and I. M. Widiartha, 

“Optimization of k-means clustering 

using particle swarm optimization 

algorithm for grouping traveler reviews 

data on tripadvisor siteS,” J. Ilm. Kursor, 

vol. 12, no. 1, pp. 1–10, Jun. 2023, 

https://doi.org/10.21107/kursor.v12i01.2

69 . 

[24]  S. Wang, “Isolation Forest Anomaly 

Detection Algorithm Based On Multi-

level Sub-subspace Partition,” Int. J. 

Comput. Sci. Inf. Technol., vol. 4, no. 2, 

pp. 149–159, Oct. 2024, 

https://doi.org/10.62051/ijcsit.v4n2.20 . 

[25]  W. Skaf and T. Horváth, “Denoising 

Architecture for Unsupervised Anomaly 

Detection in Time-Series,” in New 

Trends in Database and Information 

Systems, vol. 1652, S. Chiusano, T. 

Cerquitelli, R. Wrembel, K. Nørvåg, B. 

Catania, G. Vargas-Solar, and E. 

Zumpano, Eds., in Communications in 

Computer and Information Science, vol. 

1652. , Cham: Springer International 

Publishing, 2022, pp. 178–187. 

https://doi.org/10.1007/978-3-031-

15743-1_17 .


