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Abstract 

 
Skin rashes caused by various diseases, such as monkeypox, cowpox, chickenpox, 

measles, and HFMD, often present similar symptoms, making accurate diagnosis 

challenging. This study aims to improve the classification of skin diseases through the 

application of a modified DenseNet-201 architecture combined with hyperparameter 

optimization using Random Search. The base DenseNet-201 model, with pre-trained 

weights, was first tested, achieving an accuracy of 63%, with the highest performance 

in the Healthy and HFMD classes. The proposed modified model, optimized using 

Random Search, improved overall accuracy to 80%, with enhanced precision, recall, 

and F1-score across most classes. The model’s performance was particularly notable 

in the HFMD and normal skin classes, although further improvements are needed for 

challenging classes like Cowpox and Measles. The findings highlight the potential of 

Random Search for hyperparameter tuning to enhance the performance of deep 

convolutional neural networks in the medical image classification domain, offering a 

promising tool for efficient and accurate skin disease detection.          

Key words: Classification, DenseNet-201, Hyperparameter, Random Search, Skin 

Rashes. 

 

 

INTRODUCTION 

Skin rashes are a common medical 

condition caused by various factors, including 

viral infections, allergies, and autoimmune 

diseases. Symptoms of skin rashes often 

resemble those of different diseases, making 

accurate diagnosis challenging based on 

clinical observation alone [1]. For example, 

according to Mande et al. (2022), several 

diseases diseases like monkeypox, chickenpox, 

cowpox, Hand, Foot, and Mouth Disease 

(HFMD), and measles often present with 

similar rashes, complicating the differentiation 

among them [2]. 

Currently, diagnosing diseases through skin 

rashes involves clinical examination by 

medical professionals, followed by laboratory 

confirmation using diagnostic techniques like 

Polymerase Chain Reaction (PCR) [3]. While 

this approach ensures accurate diagnosis, it can 

be time-consuming and depends on access to 

laboratory facilities, which may not be 

available in all regions. Delays in detection can 

lead to delays in treatment, potentially 

increasing the risk of infection spread within 

the community [3]. 

An innovative solution to address these 

challenges is the application of Deep 
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Convolutional Neural Networks (Deep CNNs). 

This technology offers the ability to classify 

diseases by automatically analyzing images of 

skin rashes. Unlike regular images, lesion 

images represent abnormal skin rashes 

indicative of diseases such as monkeypox, 

whereas normal images lack such abnormal 

visual cues [3]. Deep Convolutional Neural 

Networks (Deep CNNs) are characterized by a 

greater number of convolutional layers [4]. 

Similar to standard CNNs, Deep CNNs also 

incorporate pooling layers to reduce data 

dimensions and activation layers (such as 

ReLU) to enhance network efficiency [5]. Deep 

CNN, with its deep convolutional layers, can 

extract complex features from images and 

recognize patterns that might be difficult to 

capture with traditional methods [6]. This not 

only enhances detection speed but alsFo can 

expand access to early diagnosis, especially in 

areas with limited medical facilities. 

The implementation of Deep CNN in 

classifying images of skin rashes has already 

begun in the healthcare field, including 

previous research conducted by Bala et al. 

(2023), which demonstrated success in 

applying Deep CNN for multiclass skin dataset 

classification, achieving the highest accuracy 

rates of 93.91% on the original dataset and 

98.91% on the augmented dataset in detecting 

four classification classes: normal skin and skin 

with diseases such as measles, chickenpox, and 

monkeypox [7]. 

Although previous research results show 

promising accuracy rates in classifying skin 

diseases, the hyperparameter optimization 

process in that research employed a trial-and-

error approach, which often faces several 

limitations. While sometimes effective, this 

approach often requires a long time and does 

not always guarantee the optimal combination 

of hyperparameters. This drawback emphasizes 

the need for a more systematic and efficient 

approach to hyperparameter optimization. 

Therefore, this research aims to build upon 

and refine existing efforts by focusing on the 

application of more sophisticated 

hyperparameter optimization methods, namely 

Random Search. Random search is an approach 

for hyperparameter tuning that selects samples 

randomly from the search space, resulting in 

significant computational cost savings [8]. 
 This research not only focuses on 

optimizing the Deep CNN model in classifying 

types of skin rashes for monkeypox but also for 

chickenpox, measles, and normal skin. This 

study will also compare the effectiveness of 

these two methods in optimizing model 

performance. 

Random Search offers flexibility in 

exploring a vast hyperparameter space without 

getting stuck in local solutions [9]. Therefore, 

this methods is chosen for this study. 

This study builds upon and refines existing 

efforts, focusing on implementing a more 

advanced hyperparameter optimization 

method, namely Random Search. The research 

not only aims to optimize the Deep CNN model 

for classifying monkeypox, chickenpox, 

cowpox, HFMD, and measles but also to 

compare the effectiveness of hyperparameter 

tuning methods in enhancing model 

performance. In this study, hyperparameters 

will be optimized within the DenseNet 

architecture, a variant of Deep CNN known for 

its ability to retain information through dense 

connections between layers. DenseNet 

improves the feed-forward characteristics of the 

network and strengthens the flow of 

information through CNN layers [7]. 

DenseNet-201 is chosen for this study due 

to its dense connectivity structure, where each 

layer is connected to every other layer, which 

significantly improves information flow and 

gradient propagation throughout the network. 

This architecture helps in mitigating the 

vanishing gradient problem and allows for 

better feature reuse, making it an ideal choice 

for complex image classification tasks, such as 

the detection of monkeypox and other skin 

conditions. 

However, despite the strengths of 

DenseNet-201, further modification and 

hyperparameter tuning are necessary to 

enhance its performance for this specific task. 

By utilizing Random Search for 

hyperparameter optimization, the model's 

learning rate, dropout rate, and other 

parameters can be fine-tuned to avoid 

overfitting, improve convergence speed, and 

boost overall accuracy. Given the variability in 

skin conditions and the need for precise 

classification, fine-tuning these parameters can 

help the model adapt better to the complexities 

and nuances of medical images. Additionally, 

optimizing these hyperparameters helps in 

balancing the trade-off between model 

complexity and computational efficiency, 

which is crucial in real-time medical 
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applications where both accuracy and speed are 

vital. 

MATERIAL AND METHODS 

This study utilizes input data comprising 

images of normal skin and various skin 

diseases, including chickenpox, measles, 

cowpox, HFMD, and monkeypox. The input 

data is sourced from Kaggle and undergoes a 

structured series of processing stages. The first 

step involves data collection, where the dataset 

is divided into two main parts: Training Data 

and Testing Data, with an 80:20 split. 

Subsequently, the training data is further 

partitioned using stratified k-fold cross-

validation to ensure balanced class distribution 

across all folds. 

Following data partitioning, a preprocessing 

stage is conducted to prepare the data for model 

training. This preprocessing includes 

normalization and data transformation to 

enhance the quality of inputs for the model. 

Additionally, data augmentation techniques are 

applied to expand and enrich the training 

dataset by introducing variations in image 

position and color, thereby improving the 

model's generalization ability. 

 

 

Fig 1. Research procedure 

 

After preprocessing, the study focuses on 

hyperparameter tuning to identify the optimal 

configuration for the model. This process is 

carried out using the Random Search method to 

efficiently enhance model performance. The 

selected model architecture is DenseNet, a type 

of Deep Convolutional Neural Network (Deep 

CNN) known for its dense connections, which 

help maintain the flow of information between 

layers. With its ability to automatically extract 

hierarchical features, the Deep CNN model is 

expected to perform accurate classification of 

human skin diseases. 

Once the model is trained, the final stage 

involves evaluation. The model's performance 

is assessed using the testing data based on 

metrics such as accuracy, precision, recall, and 

F1-score. This systematic approach aims to 

develop a skin disease classification model that 

is not only accurate but also reliable for 

application in various medical contexts. 

The research procedure encompasses all the 

steps used in a study to achieve research 

objectives. The research procedure can be 

represented as shown in Figure 1. 

Data Collection 

The data in this study is sourced from a 

research data repository, namely Mendeley 

Data. The dataset used is called the Mpox Skin 

Lesion Dataset Version 2.0 (MSLD v2.0), 

which includes 75 images of chickenpox, 55 

images of measles, 284 images of monkeypox, 

66 images of cowpox, 161 images of HFMD, 

and 114 images of normal skin. This dataset 

was developed by Ali et al. (2023). All data are 

pre-labeled as Normal Skin Data, Chickenpox 

Data, Monkeypox Data, Cowpox Data, HFMD 

Data, and Measles Data, facilitating analysis 

and processing. These labels serve as identifiers 

for each image to be analyzed in this study. The 

data will be processed using Deep Learning 

methods, particularly Deep CNN, with the 

DenseNet architecture as the base model. 

Data Partitioning 

After completing the data collection stage, 

the next step involves splitting the dataset into 

two main groups: training data and testing data. 

In this study, the dataset is divided with a 

proportion of 80% for training data and 20% for 

testing data. This step ensures that the model 

receives sufficient data for training while 

reserving a separate set of completely unseen 

data to evaluate the overall performance of the 

model. 

The split is performed prior to implementing 

the stratified k-fold cross-validation method. 
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The training data derived from this initial 

partition is subsequently used in the validation 

process through stratified k-fold, which aims to 

iteratively train the model while maintaining a 

balanced class distribution within each fold. 

This approach allows the model to learn more 

effectively from the training data without 

compromising the balance of information 

across classes. 

Meanwhile, the testing data is separated at 

the beginning and remains unused during both 

the training and validation processes. This data 

is reserved exclusively as unseen data for the 

final stage of the study. Its primary role is to 

serve as the main evaluation tool for the 

model’s actual performance, ensuring that the 

assessment reflects the model's ability to 

recognize patterns in completely unfamiliar 

data. By adopting this approach, the model is 

expected to demonstrate strong performance 

and a high degree of generalization when 

applied to real-world cases, such as in skin 

disease classification. 

Stratified K-Fold Cross Validation 

After dividing the dataset into training and 

testing data, the training data undergoes further 

processing using the Stratified K-Fold Cross-

Validation method. In this study, the method is 

implemented with a 5-fold partition. Each fold 

is divided into two subsets: training data and 

validation data. The validation data is 

proportionally sampled from the training data 

to ensure that class distributions remain 

balanced in each fold.  

The Stratified K-Fold Cross-Validation 

process involves splitting the training data into 

five equal parts. In each iteration, one part is 

used as validation data, while the remaining 

four parts serve as training data. This process is 

repeated five times, ensuring that each portion 

of the training data acts as validation data 

exactly once. With this approach, all training 

data contribute equally to the training process 

while also being used for intermediate 

evaluation on the validation set. 

The primary role of validation data in this 

method is to provide an interim assessment of 

the model's performance during training. By 

utilizing a small portion of the training data that 

is excluded from the main training iterations, 

this study can measure and analyze the model's 

performance in greater detail. These 

evaluations help detect potential issues such as 

overfitting or underfitting early on, enabling 

adjustments to optimize the model's 

performance before conducting final testing on 

the unseen testing data. This strategy is 

expected to produce a more accurate model 

with improved generalization capabilities for 

classifying skin diseases 

Data Preprocessing 

After completing the stratified k-fold cross-

validation stage, the preprocessing phase is 

carried out through several key steps, including 

data augmentation, feature scaling, and 

resizing. This process aims to prepare the data 

for training and testing the model. The 

complete workflow of these preprocessing 

steps is illustrated in Figure 2. 

 

Fig 2. Preprocessing data 

 

The next step is data augmentation. In 

training deep learning models, having a large 

dataset is crucial to prevent overfitting and 

enhance accuracy [11]. 

Augmentation generates new variations 

from the existing data by changing attributes 

such as position and color, thereby increasing 

the diversity of the dataset. As seen in the 

research conducted by Bala et al. (2023) [7], 
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data augmentation parameters can be applied as 

shown in Table 1. 

 

Table 1.  Augmentation Parameters 

Parameters Definition 

Rotation Range Input data is created by 

rotating from -45 to 45 

degrees 

Horizontal Flip Randomly flip the 

input data horizontally 

Vertical Flip Randomly flip the 

input data vertically 

Zoom Range Perform zoom in or out 

from the center by a 

factor of 0.8 to 1.25 and 

randomly rotate the 

image by 45 degrees 

Brightness 

Variation Range 

Randomly adjust the 

brightness of the image 

by a factor of 0.1 to 2 

Contrast Range Randomly adjust the 

contrast of the image 

by a factor of 0.5 to 2 

Jitter Hue Randomly adjust the 

hue of the image by a 

factor of 0.5 

Jitter Saturation Randomly adjust the 

brightness of the image 

by a factor of 0.2 to 3 

Fill Mode Fill the gaps with black 

pixel values 

In this study, there is an imbalance in the 

initial amount of data in each class. Through the 

data augmentation process, it is expected to 

create a balance between the amount of data in 

each class, allowing the resulting model to be 

more effective and able to address the existing 

data imbalances. 

Hyperparameter Settings 

After the data partitioning stage, the focus 

shifts to the Hyper-parameters Setting of the 

model. This setting aims to find the optimal 

combination of hyperparameter values that can 

enhance the model's performance. Several 

hyperparameters to be adjusted include dropout 

rate, learning rate, filters, optimizer, batch size, 

number of epochs, as well as parameters related 

to the model architecture, such as the number of 

layers and filters in the convolutional layers. 

For instance, the learning rate will be set to 

determine the extent to which the model 

responds to changes during training, while the 

batch size will influence how many samples are 

used in each training iteration. The number of 

epochs, on the other hand, will indicate how 

many times the entire dataset will be processed 

by the model. The dropout rate will be 

configured to reduce overfitting by randomly 

ignoring a number of units in the network layers 

during training, making the model more robust 

to new data. 

The Hyper-parameters Setting process 

involves exploring various combinations of 

values to find the best configuration that can 

enhance the model's performance on the 

validation data. In this study, a comparison will 

be made across different trials in the random 

search for hyperparameter tuning. The 

validation accuracy from each hyperparameter 

combination in each trial will be compared, and 

the combination with the highest validation 

accuracy will be selected as the 

hyperparameters for modifying DenseNet-201. 

There will be five trials of the random search 

implementation as hyperparameter tuning in 

this research. 

DenseNet-201 Model 

After obtaining the best parameter values in 

the previous step, the next phase is to 

implement the Deep Convolutional Neural 

Network (CNN) Model using DenseNet-201 

architecture as the foundation. DenseNet-201 

offers an advantage through its dense 

connectivity structure, where each layer is 

connected directly to all subsequent layers. This 

dense connection facilitates better information 

and gradient flow throughout the network, 

leading to improved feature extraction from 

input images. 

The DenseNet-201 architecture is shown in 

Figure 3. It begins with a convolutional layer 

followed by a pooling layer. The architecture 

consists of four dense blocks, each separated by 

transition layers. Each dense block contains 

several convolutional layers (6, 12, 24, and 16 

layers, respectively), and these blocks perform 

a series of convolutions using 1x1 and 3x3 

filters to extract various features from the input 

images. The transition layers between the dense 

blocks include batch normalization, a 1x1 

convolution, and a 2x2 average pooling 

operation, which help reduce the spatial 

dimensions while maintaining the depth of the 

feature maps. The architecture concludes with a 

global average pooling layer, followed by a 
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fully connected layer with a softmax activation 

for classification. 
 

 
Fig 3. DenseNet-201 architecture 

 

In the model implementation process, 

feature extraction focuses on two main 

characteristics: color and texture of skin rash 

images, particularly for chickenpox, 

monkeypox, measles, and normal skin.  

The model implementation process involves 

training the model using the previously 

prepared training data. During training, 

validation data is used to evaluate how well the 

model performs and to avoid overfitting or 

underfitting issues. Once the model achieves 

good convergence, testing can be conducted on 

the testing data to assess the model's accuracy 

in making predictions on unseen data [12]. In 

subsequent steps, the model will be modified 

based on the best-found hyperparameters by 

using Random Search, optimizing its 

performance and refining its classification 

accuracy. 

Model Evaluation 

After implementing the model, its 

performance is evaluated using a Multiclass 

Confusion Matrix. A Confusion Matrix is a 

table that records the performance of a 

classification model [13]. 

The Multiclass Confusion Matrix provides 

values regarding how well the model can 

correctly classify positive cases (skin diseases) 

and negative cases (normal skin). From the 

results of the Multiclass Confusion Matrix, 

various metrics such as accuracy, precision, 

recall, and F1 score can be calculated to present 

a holistic picture of the model's performance. 

This evaluation helps in understanding how 

well the model can recognize skin diseases and 

guides necessary improvement steps. 
 

 
 

Human Skin Rash Classification System  

After completing the model evaluation, the 

next step is to design a simple system capable 

of classifying new images, providing important 

information for diagnosis and further medical 

intervention. 

The aim of this system is to facilitate testing 

the model. This is realized through a visually 

simple user interface, allowing the 

classification results to be displayed clearly and 

understandably. This visual interface is 

expected to assist users in evaluating the 

model's performance and viewing the 

classification results of human skin rashes. 

With this approach, the system not only 

provides accurate classification results but also 

ensures practicality and usability in the model 

testing and evaluation process. 

RESULT AND DISCUSSION 

Based on the data collected, representative 

samples were taken from each class of the 

dataset. These samples included images from 

six classes: monkeypox, chickenpox, measles, 

cowpox, HFMD and normal skin. Then sample 

of image is shown in Figure 4.  

 

 

Fig 4. Sample of image 
 

After the data collection phase is complete, 

the next step is to perform data partitioning. In 

this study, the data is divided with a ratio of 

80:20, where 80% of the total data is used for 

training and the remaining 20% is used as test 

data.This partitioning is aimed at ensuring that 

the model has sufficient training data to learn 

from, while also having test data as unseen data 

to evaluate the model's performance after the 

training is completed. Table 2 provides a 

detailed breakdown of the data distribution for 

each class, illustrating how the training and 

testing data are allocated for each category. 
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Table 2. Data Partitioning 

Label Data Training 

Data 

Testing Data 

Chickenpox 60 15 

Cowpox 53 13 

Monkeypox 227 57 

Measles 44 11 

HFMD 129 32 

Normal 91 23 

Total Data 604 151 

 

Table 3. Stratified K-Fold 

Fold Label Data Training 

Data 

Validation 

Data 

1 

Chickenpox 48 12 

Cowpox 43 10 

Monkeypox 181 46 

Measles 35 9 

HFMD 103 26 

Normal 73 18 

2 

Total Data 48 12 

Chickenpox 42 11 

Cowpox 182 45 

Monkeypox 35 9 

Measles 103 26 

HFMD 73 18 

3 

Normal 48 12 

Total Data 42 11 

Chickenpox 182 45 

Cowpox 35 9 

Monkeypox 103 26 

Measles 73 18 

4 

HFMD 48 12 

Normal 42 11 

Total Data 182 45 

Chickenpox 36 8 

Cowpox 103 26 

Monkeypox 72 19 

5 

Measles 48 12 

HFMD 43 10 

Normal 181 46 

Total Data 35 9 

Chickenpox 104 25 

Cowpox 73 18 

 

After the training and testing data 

partitioning phase, the training data is 

processed using the Stratified K-Fold Cross-

Validation method to ensure that the model is 

trained and evaluated optimally. In this study, 

the training data is divided into 5 equal folds. 

Each fold consists of two parts: training data 

and validation data, which are taken 

proportionally, ensuring that the class 

distribution remains balanced in each fold. 

Table 3 provides a detailed breakdown of the 

data for each fold, offering a deeper 

understanding of the distribution of training and 

validation data used in each iteration of 

Stratified K-Fold. 

 

 

Fig 5. Sample of the augmented image 

 

During training, each data batch is 

automatically processed to produce different 

images each time it is handled by the data 

generator. Table 4.4 shows the distribution of 

the initial data for each class, prior to dynamic 

augmentation. With this technique, 

augmentation not only adds variety but also 

maintains a balance in the number of samples 

for each class during the training process. 

Examples of the augmented images can be seen 

in Figure 5, demonstrating how these 

transformations enhance variation without 

altering the semantic representation of the data. 

This augmentation process is integrated 

with the data preprocessing stage. Additionally, 

feature scaling was applied to normalize the 

pixel values of the images, ensuring that the 

model's learning process would not be 

influenced by varying scales in the input 

data. Min-Max scaling was used to transform 

each pixel value into the range of 0 to 1, making 

the data uniform for the model [14]. 

Subsequently, each image is resized to 224x224 

pixels, aligning with the input dimensions 

required by the model's architecture. 

After the preprocessing stage, the next step 

is to build a model using the basic DenseNet-

201 architecture without hyperparameter 

tuning. This model utilizes default settings 

without any further adjustments to its 

parameters. Testing was performed to evaluate 

the model's performance with this standard 

configuration. 
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The results of the testing across five folds 

show varying accuracy for each fold. Table 4 

presents the validation accuracy obtained from 

each fold. 

 

Table 4. Validation Accuracy of Each Fold 

Fold Accuracy 

1 0.67 

2 0.70 

3 0.67 

4 0.67 

5 0.71 

 

Among the five folds, fold 5 achieved the 

highest accuracy, with a value of 71%. 

Therefore, the model trained with fold 5 was 

selected to proceed to the testing phase.  

The testing results shown in Figure 6 reveal 

that the basic DenseNet-201 model achieved an 

overall accuracy of 63%, with an average 

precision value of 67%, recall of 57%, and F1-

score of 59%. The best performance was 

achieved in the Healthy class, with the highest 

precision of 88% and an F1-score of 72%. The 

HFMD class also showed relatively good 

results, with a recall of 97%, although its F1-

score was still considered low at 67%. On the 

other hand, performance in the Chickenpox and 

Measles classes was relatively poorer, 

especially in recall and F1-score. 

 

 

Fig 6. Evaluation of basic DenseNet-201 

Overall, while this model showed decent 

results for certain classes, its performance still 

needs to be improved in order to enhance 

accuracy and other evaluation metrics, 

especially for the more challenging classes. 

One potential approach to improve 

performance is hyperparameter tuning. In this 

study, the Random Search method was 

employed for hyperparameter tuning. 

At this stage, the Random Search method is 

used to find the optimal hyperparameter 

combination for the model. This process 

involves evaluating different hyperparameter 

combinations randomly within the predefined 

search space. The hyperparameter search space 

is presented in Table 5, which includes 

parameters such as learning rate, dropout rate, 

batch size, number of filters, optimizer type, 

and number of epochs. 

 

Table 5. Hyperparameter Initialization 

Hyperparameter Value Range 

Learning rate [0.0001, 0.001] 

Dropout rate [0.4, 0.5, 0.6, 0.7] 

Batch size [32, 64] 

Filters [256, 512, 1024] 

Optimizer [256, 512, 1024] 

Epochs [10] 

 

In this experiment, 10 trials are conducted 

for each fold during the cross-validation 

process. Therefore, each fold evaluates ten 

different hyperparameter combinations, 

providing ample opportunity to explore the 

search space. This method helps identify the 

best configurations that deliver optimal 

performance on the validation data. 

Once all the folds are completed, Table 6 

presents the best results obtained from each 

fold, including the best hyperparameter 

combinations discovered. This process ensures 

that the model receives hyperparameter settings 

that are not only suited for the training data but 

also improve generalization on the validation 

data. 

From the trials that have been conducted, it 

is evident that in the trial on fold 4, the 

combination of hyperparameters used achieved 

the highest validation accuracy, reaching 90%. 

Therefore, this combination of 

hyperparameters was selected for use in the 

Deep CNN model with the DenseNet-201 

architecture. This selection was based on the 

best performance shown in the evaluation, 
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ensuring that the model has optimal 

generalization capability on unseen data. 

 

Table 6. Best Trial Each Fold 
Fold Hyperparameter Value Accuracy 

1 

Learning rate 0.0001 

0.88 

 

Dropout rate 0.7 

Batch size 32 

Filters 512 

Optimizer  rmsprop 

Epochs 10 

2 

Learning rate 0.0001 

0.81 

Dropout rate 0.7 

Batch size 32 

Filters 256 

Optimizer  rmsprop 

Epochs 10 

3 

Learning rate 0.0001 

0.82 

 

Dropout rate 0.4 

Batch size 32 

Filters 512 

Optimizer  rmsprop 

Epochs 10 

4 

Learning rate 0.0001 

0.90 

Dropout rate 0.4 

Batch size 32 

Filters 512 

Optimizer  rmsprop 

Epochs 10 

5 

Learning rate 0.0001 

0.82 

Dropout rate 0.4 

Batch size 64 

Filters 256 

Optimizer  adam 

Epochs 10 

 

 

Fig 7. Evaluation of modified DenseNet-201 

Figure 7 shows the Confusion Matrix from 

the random search hyperparameter tuning. 

Based on the testing results, the model built 

with the best hyperparameter combination 

achieved an overall accuracy of 80%. The 

average evaluation metrics also indicate good 

performance, with precision of 81%, recall of 

80%, and F1-score of 80%. The best 

performance was observed in the HFMD class, 

with the highest F1-score of 88%, indicating 

that the model was able to identify this class 

effectively. The normal skin class also showed 

good performance with an F1-score of 81%. 

However, performance on the Cowpox and 

Measles classes was relatively lower, 

particularly in terms of recall. Overall, the 

model demonstrated reasonably good 

capabilities in classifying data across various 

skin disease classes, although there is room for 

improvement, particularly in the more 

challenging classes. 

By using the best hyperparameter 

combination, the model’s performance was 

subsequently improved, which is further 

discussed in the following section. The results 

indicate that proper hyperparameter tuning, 

particularly through Random Search, plays a 

critical role in optimizing the performance of 

deep learning models like DenseNet-201 when 

applied to complex image classification tasks. 

The main difference between the two 

DenseNet-201 architectures lies in the 

additional layers in the modified version. The 

default DenseNet-201 architecture consists of 

the base model followed by global average 

pooling and a softmax output layer for 

classification. In contrast, the modified version 

introduces extra layers: a convolutional layer 

with 3x3 filters, a max-pooling layer, and a 

dropout layer. These additions aim to enhance 

feature extraction, reduce overfitting, and refine 

the model’s performance before the final output 

layer. Both versions ultimately use a softmax 

activation for multi-class classification but 

differ in their layer configurations and 

complexity. 

In the modified model (Figure 8), a 

convolutional layer with 3x3 filters and 48 

filters is added after the DenseNet-201 base 

model. This layer helps in refining the feature 

extraction process by applying additional 

convolution operations. Following this, a 

MaxPooling2D layer is used, which reduces the 

dimensions of the feature map by selecting the 

maximum value from each 2x2 patch. This 
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operation helps retain the most important 

features and accelerates the training process. 

Additionally, a fully connected layer with 256 

units and a dropout layer (with a rate of 0.4) are 

introduced to prevent overfitting and improve 

generalization. Finally, the model concludes 

with a softmax output layer for classification 

into 6 classes. Additionally, 

GlobalAveragePooling2D is employed, which 

calculates the average of all values in the 

feature map. This method produces one value 

per channel and serves to drastically reduce 

dimensionality, thereby enhancing the model's 

robustness to spatial variations in the images 

[15]. 
 

 

Fig 8. Architecture of the modified model 

 

Compared to the basic DenseNet-201 

architecture, these added layers contribute to a 

more detailed and robust feature extraction 

process, improving classification accuracy. 

Following the testing of the model, a simple 

system was developed for classifying types of 

human skin rashes. The system interface is 

shown in Figure 9, which includes a field for 

inputting images and displays the classification 

results along with the percentage likelihood of 

other classes. 

Table 7 summarizes the comparison of the 

proposed model in this study with the modified 

DenseNet-201 architecture and the research 

conducted by Bala et al., who utilized the 

modified DenseNet-201 architecture. 

 

 

Fig 9. Skin rash classification system 

 

Table 7. Comparision With Previous Research 

Research Method Accuracy 

[7] 

Modified 

DenseNet-

201 

93,91% 

(Original 

Image) and 

98,91% 

(Augmented 

Image) 

Basic 

Model 

DenseNet-

201 

Overall 

accuracy of 

63%. 

Proposed 

Model 

Modified 

DenseNet-

201 

Overall 

accuracy of 

80%. 

CONCLUSION 

This study successfully demonstrated the 

application of hyperparameter optimization 

using Random Search on the DenseNet-201 

architecture for classifying skin diseases, 

specifically monkeypox, chickenpox, measles, 

HFMD, and normal skin. Based on the testing 

results, the base DenseNet-201 model achieved 

an accuracy of 63%, with the best performance 

observed in the Healthy and HFMD classes. 

However, the performance in the Chickenpox 

and Measles classes still needs improvement, 

particularly in recall and F1-score. 

On the other hand, the modified model with 

hyperparameter optimization through Random 

Search showed a significant improvement in 

performance, achieving an overall accuracy of 

80%, with better precision, recall, and F1-score 

across all classes. The best performance was 

noted in the HFMD and normal skin classes, 

although performance in the Cowpox and 

Measles classes still requires further 

enhancement. 

A comparison with previous research shows 

that the modified model in this study 

outperforms the basic DenseNet-201 model, 

but it is still below the performance of the 

DenseNet-201 model modified in Bala et al. 

(2023). Nevertheless, this study demonstrates 
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that hyperparameter optimization using 

Random Search can improve the efficiency and 

performance of the model, making it an 

effective approach for enhancing the accuracy 

and precision of skin disease detection using 

Deep CNN. 
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