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Abstract

Skin rashes caused by various diseases, such as monkeypox, cowpox, chickenpox,
measles, and HFMD, often present similar symptoms, making accurate diagnosis
challenging. This study aims to improve the classification of skin diseases through the
application of a modified DenseNet-201 architecture combined with hyperparameter
optimization using Random Search. The base DenseNet-201 model, with pre-trained
weights, was first tested, achieving an accuracy of 63%, with the highest performance
in the Healthy and HFMD classes. The proposed modified model, optimized using
Random Search, improved overall accuracy to 80%, with enhanced precision, recall,
and F1-score across most classes. The model’s performance was particularly notable
in the HFMD and normal skin classes, although further improvements are needed for
challenging classes like Cowpox and Measles. The findings highlight the potential of
Random Search for hyperparameter tuning to enhance the performance of deep
convolutional neural networks in the medical image classification domain, offering a
promising tool for efficient and accurate skin disease detection.
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INTRODUCTION
Skin rashes are a common medical

condition caused by various factors, including
viral infections, allergies, and autoimmune
diseases. Symptoms of skin rashes often
resemble those of different diseases, making
accurate diagnosis challenging based on
clinical observation alone [1]. For example,
according to Mande et al. (2022), several
diseases diseases like monkeypox, chickenpox,
cowpox, Hand, Foot, and Mouth Disease
(HFMD), and measles often present with
similar rashes, complicating the differentiation
among them [2].
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Currently, diagnosing diseases through skin
rashes involves clinical examination by
medical professionals, followed by laboratory
confirmation using diagnostic techniques like
Polymerase Chain Reaction (PCR) [3]. While
this approach ensures accurate diagnosis, it can
be time-consuming and depends on access to
laboratory facilities, which may not be
available in all regions. Delays in detection can
lead to delays in treatment, potentially
increasing the risk of infection spread within
the community [3].

An innovative solution to address these
challenges is the application of Deep



180 Jurnal Ilmiah KURSOR, Vol. 12, No. 4, Desember 2024, hal 179 - 190

Convolutional Neural Networks (Deep CNNs).
This technology offers the ability to classify
diseases by automatically analyzing images of
skin rashes. Unlike regular images, lesion
images represent abnormal skin rashes
indicative of diseases such as monkeypox,
whereas normal images lack such abnormal
visual cues [3]. Deep Convolutional Neural
Networks (Deep CNNs) are characterized by a
greater number of convolutional layers [4].
Similar to standard CNNs, Deep CNNs also
incorporate pooling layers to reduce data
dimensions and activation layers (such as
ReLU) to enhance network efficiency [5]. Deep
CNN, with its deep convolutional layers, can
extract complex features from images and
recognize patterns that might be difficult to
capture with traditional methods [6]. This not
only enhances detection speed but alsFo can
expand access to early diagnosis, especially in
areas with limited medical facilities.

The implementation of Deep CNN in
classifying images of skin rashes has already
begun in the healthcare field, including
previous research conducted by Bala et al.
(2023), which demonstrated success in
applying Deep CNN for multiclass skin dataset
classification, achieving the highest accuracy
rates of 93.91% on the original dataset and
98.91% on the augmented dataset in detecting
four classification classes: normal skin and skin
with diseases such as measles, chickenpox, and
monkeypox [7].

Although previous research results show
promising accuracy rates in classifying skin
diseases, the hyperparameter optimization
process in that research employed a trial-and-
error approach, which often faces several
limitations. While sometimes effective, this
approach often requires a long time and does
not always guarantee the optimal combination
of hyperparameters. This drawback emphasizes
the need for a more systematic and efficient
approach to hyperparameter optimization.

Therefore, this research aims to build upon
and refine existing efforts by focusing on the
application of more sophisticated
hyperparameter optimization methods, namely
Random Search. Random search is an approach
for hyperparameter tuning that selects samples
randomly from the search space, resulting in
significant computational cost savings [8].

This research not only focuses on
optimizing the Deep CNN model in classifying
types of skin rashes for monkeypox but also for

chickenpox, measles, and normal skin. This
study will also compare the effectiveness of
these two methods in optimizing model
performance.

Random Search offers flexibility in
exploring a vast hyperparameter space without
getting stuck in local solutions [9]. Therefore,
this methods is chosen for this study.

This study builds upon and refines existing
efforts, focusing on implementing a more
advanced hyperparameter optimization
method, namely Random Search. The research
not only aims to optimize the Deep CNN model
for classifying monkeypox, chickenpox,
cowpox, HFMD, and measles but also to
compare the effectiveness of hyperparameter
tuning methods in enhancing model
performance. In this study, hyperparameters
will be optimized within the DenseNet
architecture, a variant of Deep CNN known for
its ability to retain information through dense
connections between layers. DenseNet
improves the feed-forward characteristics of the
network and strengthens the flow of
information through CNN layers [7].

DenseNet-201 is chosen for this study due
to its dense connectivity structure, where each
layer is connected to every other layer, which
significantly improves information flow and
gradient propagation throughout the network.
This architecture helps in mitigating the
vanishing gradient problem and allows for
better feature reuse, making it an ideal choice
for complex image classification tasks, such as
the detection of monkeypox and other skin
conditions.

However, despite the strengths of
DenseNet-201, further modification and
hyperparameter tuning are necessary to
enhance its performance for this specific task.
By  utilizing = Random Search  for
hyperparameter optimization, the model's
learning rate, dropout rate, and other
parameters can be fine-tuned to avoid
overfitting, improve convergence speed, and
boost overall accuracy. Given the variability in
skin conditions and the need for precise
classification, fine-tuning these parameters can
help the model adapt better to the complexities
and nuances of medical images. Additionally,
optimizing these hyperparameters helps in
balancing the trade-off between model
complexity and computational efficiency,
which is crucial in real-time medical
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applications where both accuracy and speed are
vital.

MATERIAL AND METHODS

This study utilizes input data comprising
images of normal skin and various skin
diseases, including chickenpox, measles,
cowpox, HFMD, and monkeypox. The input
data is sourced from Kaggle and undergoes a
structured series of processing stages. The first
step involves data collection, where the dataset
is divided into two main parts: Training Data
and Testing Data, with an 80:20 split.
Subsequently, the training data is further
partitioned using stratified k-fold cross-
validation to ensure balanced class distribution
across all folds.

Following data partitioning, a preprocessing
stage is conducted to prepare the data for model
training.  This  preprocessing  includes
normalization and data transformation to
enhance the quality of inputs for the model.
Additionally, data augmentation techniques are
applied to expand and enrich the training
dataset by introducing variations in image
position and color, thereby improving the
model's generalization ability.
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Fig 1. Research procedure

After preprocessing, the study focuses on
hyperparameter tuning to identify the optimal
configuration for the model. This process is
carried out using the Random Search method to

efficiently enhance model performance. The
selected model architecture is DenseNet, a type
of Deep Convolutional Neural Network (Deep
CNN) known for its dense connections, which
help maintain the flow of information between
layers. With its ability to automatically extract
hierarchical features, the Deep CNN model is
expected to perform accurate classification of
human skin diseases.

Once the model is trained, the final stage
involves evaluation. The model's performance
is assessed using the testing data based on
metrics such as accuracy, precision, recall, and
Fl-score. This systematic approach aims to
develop a skin disease classification model that
is not only accurate but also reliable for
application in various medical contexts.

The research procedure encompasses all the
steps used in a study to achieve research
objectives. The research procedure can be
represented as shown in Figure 1.

Data Collection

The data in this study is sourced from a
research data repository, namely Mendeley
Data. The dataset used is called the Mpox Skin
Lesion Dataset Version 2.0 (MSLD v2.0),
which includes 75 images of chickenpox, 55
images of measles, 284 images of monkeypox,
66 images of cowpox, 161 images of HFMD,
and 114 images of normal skin. This dataset
was developed by Ali et al. (2023). All data are
pre-labeled as Normal Skin Data, Chickenpox
Data, Monkeypox Data, Cowpox Data, HFMD
Data, and Measles Data, facilitating analysis
and processing. These labels serve as identifiers
for each image to be analyzed in this study. The
data will be processed using Deep Learning
methods, particularly Deep CNN, with the
DenseNet architecture as the base model.

Data Partitioning

After completing the data collection stage,
the next step involves splitting the dataset into
two main groups: training data and testing data.
In this study, the dataset is divided with a
proportion of 80% for training data and 20% for
testing data. This step ensures that the model
receives sufficient data for training while
reserving a separate set of completely unseen
data to evaluate the overall performance of the
model.

The split is performed prior to implementing
the stratified k-fold cross-validation method.
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The training data derived from this initial
partition is subsequently used in the validation
process through stratified k-fold, which aims to
iteratively train the model while maintaining a
balanced class distribution within each fold.
This approach allows the model to learn more
effectively from the training data without
compromising the balance of information
across classes.

Meanwhile, the testing data is separated at
the beginning and remains unused during both
the training and validation processes. This data
is reserved exclusively as unseen data for the
final stage of the study. Its primary role is to
serve as the main evaluation tool for the
model’s actual performance, ensuring that the
assessment reflects the model's ability to
recognize patterns in completely unfamiliar
data. By adopting this approach, the model is
expected to demonstrate strong performance
and a high degree of generalization when
applied to real-world cases, such as in skin
disease classification.

Stratified K-Fold Cross Validation

After dividing the dataset into training and
testing data, the training data undergoes further
processing using the Stratified K-Fold Cross-
Validation method. In this study, the method is
implemented with a 5-fold partition. Each fold
is divided into two subsets: training data and
validation data. The wvalidation data is
proportionally sampled from the training data
to ensure that class distributions remain
balanced in each fold.

The Stratified K-Fold Cross-Validation
process involves splitting the training data into
five equal parts. In each iteration, one part is
used as validation data, while the remaining
four parts serve as training data. This process is
repeated five times, ensuring that each portion
of the training data acts as validation data
exactly once. With this approach, all training
data contribute equally to the training process
while also being used for intermediate
evaluation on the validation set.

The primary role of validation data in this
method is to provide an interim assessment of
the model's performance during training. By
utilizing a small portion of the training data that
is excluded from the main training iterations,
this study can measure and analyze the model's
performance in greater detail. These
evaluations help detect potential issues such as

overfitting or underfitting early on, enabling
adjustments to optimize the model's
performance before conducting final testing on
the unseen testing data. This strategy is
expected to produce a more accurate model
with improved generalization capabilities for
classifying skin diseases

Data Preprocessing

After completing the stratified k-fold cross-
validation stage, the preprocessing phase is
carried out through several key steps, including
data augmentation, feature scaling, and
resizing. This process aims to prepare the data
for training and testing the model. The
complete workflow of these preprocessing
steps is illustrated in Figure 2.
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Fig 2. Preprocessing data

The next step is data augmentation. In
training deep learning models, having a large
dataset is crucial to prevent overfitting and
enhance accuracy [11].

Augmentation generates new variations
from the existing data by changing attributes
such as position and color, thereby increasing
the diversity of the dataset. As seen in the
research conducted by Bala et al. (2023) [7],
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data augmentation parameters can be applied as
shown in Table 1.

Table 1. Augmentation Parameters
Parameters Definition
Rotation Range  Input data is created by
rotating from -45 to 45
degrees

Horizontal Flip Randomly flip the
input data horizontally
Vertical Flip Randomly flip the

input data vertically
Perform zoom in or out
from the center by a
factor of 0.8 to 1.25 and
randomly rotate the
image by 45 degrees
Brightness Randomly adjust the
Variation Range  brightness of the image
by a factor of 0.1 to 2
Randomly adjust the
contrast of the image
by a factor of 0.5 to 2
Randomly adjust the
hue of the image by a
factor of 0.5

Randomly adjust the
brightness of the image
by a factor of 0.2 to 3
Fill the gaps with black
pixel values

Zoom Range

Contrast Range

Jitter Hue

Jitter Saturation

Fill Mode

In this study, there is an imbalance in the
initial amount of data in each class. Through the
data augmentation process, it is expected to
create a balance between the amount of data in
each class, allowing the resulting model to be
more effective and able to address the existing
data imbalances.

Hyperparameter Settings

After the data partitioning stage, the focus
shifts to the Hyper-parameters Setting of the
model. This setting aims to find the optimal
combination of hyperparameter values that can
enhance the model's performance. Several
hyperparameters to be adjusted include dropout
rate, learning rate, filters, optimizer, batch size,
number of epochs, as well as parameters related
to the model architecture, such as the number of
layers and filters in the convolutional layers.
For instance, the learning rate will be set to
determine the extent to which the model
responds to changes during training, while the

batch size will influence how many samples are
used in each training iteration. The number of
epochs, on the other hand, will indicate how
many times the entire dataset will be processed
by the model. The dropout rate will be
configured to reduce overfitting by randomly
ignoring a number of units in the network layers
during training, making the model more robust
to new data.

The Hyper-parameters Setting process
involves exploring various combinations of
values to find the best configuration that can
enhance the model's performance on the
validation data. In this study, a comparison will
be made across different trials in the random
search for hyperparameter tuning. The
validation accuracy from each hyperparameter
combination in each trial will be compared, and
the combination with the highest validation
accuracy will be selected as the
hyperparameters for modifying DenseNet-201.
There will be five trials of the random search
implementation as hyperparameter tuning in
this research.

DenseNet-201 Model

After obtaining the best parameter values in
the previous step, the next phase is to
implement the Deep Convolutional Neural
Network (CNN) Model using DenseNet-201
architecture as the foundation. DenseNet-201
offers an advantage through its dense
connectivity structure, where each layer is
connected directly to all subsequent layers. This
dense connection facilitates better information
and gradient flow throughout the network,
leading to improved feature extraction from
input images.

The DenseNet-201 architecture is shown in
Figure 3. It begins with a convolutional layer
followed by a pooling layer. The architecture
consists of four dense blocks, each separated by
transition layers. Each dense block contains
several convolutional layers (6, 12, 24, and 16
layers, respectively), and these blocks perform
a series of convolutions using 1x1 and 3x3
filters to extract various features from the input
images. The transition layers between the dense
blocks include batch normalization, a 1x1
convolution, and a 2x2 average pooling
operation, which help reduce the spatial
dimensions while maintaining the depth of the
feature maps. The architecture concludes with a
global average pooling layer, followed by a
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fully connected layer with a softmax activation
for classification.
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Fig 3. DenseNet-201 architecture

In the model implementation process,
feature extraction focuses on two main
characteristics: color and texture of skin rash
images,  particularly  for  chickenpox,
monkeypox, measles, and normal skin.

The model implementation process involves
training the model wusing the previously
prepared training data. During training,
validation data is used to evaluate how well the
model performs and to avoid overfitting or
underfitting issues. Once the model achieves
good convergence, testing can be conducted on
the testing data to assess the model's accuracy
in making predictions on unseen data [12]. In
subsequent steps, the model will be modified
based on the best-found hyperparameters by
using Random Search, optimizing its
performance and refining its classification
accuracy.

Model Evaluation

After implementing the model, its
performance is evaluated using a Multiclass
Confusion Matrix. A Confusion Matrix is a
table that records the performance of a
classification model [13].

The Multiclass Confusion Matrix provides
values regarding how well the model can
correctly classify positive cases (skin diseases)
and negative cases (normal skin). From the
results of the Multiclass Confusion Matrix,
various metrics such as accuracy, precision,
recall, and F1 score can be calculated to present
a holistic picture of the model's performance.
This evaluation helps in understanding how
well the model can recognize skin diseases and
guides necessary improvement steps.

Human Skin Rash Classification System

After completing the model evaluation, the
next step is to design a simple system capable
of classifying new images, providing important
information for diagnosis and further medical
intervention.

The aim of this system is to facilitate testing
the model. This is realized through a visually
simple user interface, allowing the
classification results to be displayed clearly and
understandably. This visual interface is
expected to assist users in evaluating the
model's performance and viewing the
classification results of human skin rashes.
With this approach, the system not only
provides accurate classification results but also
ensures practicality and usability in the model
testing and evaluation process.

RESULT AND DISCUSSION

Based on the data collected, representative
samples were taken from each class of the
dataset. These samples included images from
six classes: monkeypox, chickenpox, measles,
cowpox, HFMD and normal skin. Then sample
of image is shown in Figure 4.

-
-

f‘

i 4
o
Fig 4. Sample of image

After the data collection phase is complete,
the next step is to perform data partitioning. In
this study, the data is divided with a ratio of
80:20, where 80% of the total data is used for
training and the remaining 20% is used as test
data.This partitioning is aimed at ensuring that
the model has sufficient training data to learn
from, while also having test data as unseen data
to evaluate the model's performance after the
training is completed. Table 2 provides a
detailed breakdown of the data distribution for
each class, illustrating how the training and
testing data are allocated for each category.
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Table 2. Data Partitioning

Label Data  Training Testing Data
Data
Chickenpox 60 15
Cowpox 53 13
Monkeypox 227 57
Measles 44 11
HFMD 129 32
Normal 91 23
Total Data 604 151

Table 3. Stratified K-Fold

Fold Label Data Training Validation

Data Data
Chickenpox 48 12
Cowpox 43 10
1 Monkeypox 181 46
Measles 35 9
HFMD 103 26
Normal 73 18
Total Data 48 12
Chickenpox 42 11
5 Cowpox 182 45
Monkeypox 35 9
Measles 103 26
HFMD 73 18
Normal 48 12
Total Data 42 11
3 Chickenpox 182 45
Cowpox 35 9
Monkeypox 103 26
Measles 73 18
HFMD 48 12
Normal 42 11
4 Total Data 182 45
Chickenpox 36 8
Cowpox 103 26
Monkeypox 72 19
Measles 48 12
HFMD 43 10
5 Normal 181 46
Total Data 35 9
Chickenpox 104 25
Cowpox 73 18

After the ftraining and testing data
partitioning phase, the training data is
processed using the Stratified K-Fold Cross-
Validation method to ensure that the model is
trained and evaluated optimally. In this study,
the training data is divided into 5 equal folds.
Each fold consists of two parts: training data
and validation data, which are taken

proportionally, ensuring that the class
distribution remains balanced in each fold.
Table 3 provides a detailed breakdown of the
data for each fold, offering a deeper
understanding of the distribution of training and
validation data used in each iteration of
Stratified K-Fold.

Fig 5. Sample of the augmented image

During training, each data batch is
automatically processed to produce different
images each time it is handled by the data
generator. Table 4.4 shows the distribution of
the initial data for each class, prior to dynamic
augmentation. With this technique,
augmentation not only adds variety but also
maintains a balance in the number of samples
for each class during the training process.
Examples of the augmented images can be seen
in Figure 5, demonstrating how these
transformations enhance variation without
altering the semantic representation of the data.

This augmentation process is integrated
with the data preprocessing stage. Additionally,
feature scaling was applied to normalize the
pixel values of the images, ensuring that the
model's learning process would not be
influenced by varying scales in the input
data. Min-Max scaling was used to transform
each pixel value into the range of 0 to 1, making
the data uniform for the model [14].
Subsequently, each image is resized to 224x224
pixels, aligning with the input dimensions
required by the model's architecture.

After the preprocessing stage, the next step
is to build a model using the basic DenseNet-
201 architecture without hyperparameter
tuning. This model utilizes default settings
without any further adjustments to its
parameters. Testing was performed to evaluate
the model's performance with this standard
configuration.
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The results of the testing across five folds
show varying accuracy for each fold. Table 4
presents the validation accuracy obtained from
each fold.

Table 4. Validation Accuracy of Each Fold

Fold Accuracy
1 0.67
2 0.70
3 0.67
4 0.67
5 0.71

Among the five folds, fold 5 achieved the
highest accuracy, with a wvalue of 71%.
Therefore, the model trained with fold 5 was
selected to proceed to the testing phase.

The testing results shown in Figure 6 reveal
that the basic DenseNet-201 model achieved an
overall accuracy of 63%, with an average
precision value of 67%, recall of 57%, and F1-
score of 59%. The best performance was
achieved in the Healthy class, with the highest
precision of 88% and an F1-score of 72%. The
HFMD class also showed relatively good
results, with a recall of 97%, although its F1-
score was still considered low at 67%. On the
other hand, performance in the Chickenpox and
Measles classes was relatively poorer,
especially in recall and F1-score.

Confusion Matrix
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Chickenpox 0.45 0.33 0.38 15
Cowpox 0.60 0.46 0.52 13
HFMD 0.51 0.97 0.67 32
Healthy 0.88 0.61 0.72 23
Measles 0.83 0.45 0.59 11
Monkeypox 0.72 0.60 0.65 57

accuracy 0.63 151

macro avg 0.67 0.57 0.59 151
weighted avg 0.67 0.63 0.62 151

Fig 6. Evaluation of basic DenseNet-201

Overall, while this model showed decent
results for certain classes, its performance still
needs to be improved in order to enhance
accuracy and other evaluation metrics,
especially for the more challenging classes.
One potential approach to  improve
performance is hyperparameter tuning. In this
study, the Random Search method was
employed for hyperparameter tuning.

At this stage, the Random Search method is
used to find the optimal hyperparameter
combination for the model. This process
involves evaluating different hyperparameter
combinations randomly within the predefined
search space. The hyperparameter search space
is presented in Table 5, which includes
parameters such as learning rate, dropout rate,
batch size, number of filters, optimizer type,
and number of epochs.

Table 5. Hyperparameter Initialization

Hyperparameter Value Range
Learning rate [0.0001, 0.001]
Dropout rate [0.4,0.5,0.6,0.7]

Batch size [32, 64]
Filters [256, 512, 1024]

Optimizer [256, 512, 1024]
Epochs [10]

In this experiment, 10 trials are conducted
for each fold during the -cross-validation
process. Therefore, each fold evaluates ten
different  hyperparameter =~ combinations,
providing ample opportunity to explore the
search space. This method helps identify the
best configurations that deliver optimal
performance on the validation data.

Once all the folds are completed, Table 6
presents the best results obtained from each
fold, including the best hyperparameter
combinations discovered. This process ensures
that the model receives hyperparameter settings
that are not only suited for the training data but
also improve generalization on the validation
data.

From the trials that have been conducted, it
is evident that in the trial on fold 4, the
combination of hyperparameters used achieved
the highest validation accuracy, reaching 90%.
Therefore, this combination of
hyperparameters was selected for use in the
Deep CNN model with the DenseNet-201
architecture. This selection was based on the
best performance shown in the evaluation,
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ensuring that the model has optimal
generalization capability on unseen data.

Table 6. Best Trial Each Fold

Fold Hyperparameter  Value  Accuracy

Learning rate 0.0001
Dropout rate 0.7

| Batch size 32 0.88
Filters 512
Optimizer rmsprop
Epochs 10
Learning rate 0.0001
Dropout rate 0.7
Batch size 32

2 Filters 256 0.81
Optimizer rmsprop
Epochs 10
Learning rate 0.0001
Dropout rate 0.4

3 Batch size 32 0.82
Filters 512
Optimizer rmsprop
Epochs 10
Learning rate 0.0001
Dropout rate 0.4
Batch size 32

4 Filters 512 0.90
Optimizer rmsprop
Epochs 10
Learning rate 0.0001
Dropout rate 0.4
Batch size 64

> Filters 256 0.82
Optimizer adam
Epochs 10

Confusion Matrix
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Chickenpox 0.69 0.73 0.71 15
Cowpox 0.73 0.62 0.67 13
HFMD 0.83 0.94 0.88 32
Healthy 0.72 0.91 0.81 23
Measles 0.78 0.64 0.70 11
Monkeypox 0.88 0.77 0.82 57

accuracy 0.80 151

macro avg 0.77 0.77 0.76 151
weighted avg 0.81 0.80 0.80 151

Fig 7. Evaluation of modified DenseNet-201

Figure 7 shows the Confusion Matrix from
the random search hyperparameter tuning.
Based on the testing results, the model built
with the best hyperparameter combination
achieved an overall accuracy of 80%. The
average evaluation metrics also indicate good
performance, with precision of 81%, recall of
80%, and Fl-score of 80%. The best
performance was observed in the HFMD class,
with the highest Fl-score of 88%, indicating
that the model was able to identify this class
effectively. The normal skin class also showed
good performance with an Fl-score of 81%.
However, performance on the Cowpox and
Measles classes was relatively lower,
particularly in terms of recall. Overall, the
model  demonstrated reasonably  good
capabilities in classifying data across various
skin disease classes, although there is room for
improvement, particularly in the more
challenging classes.

By using the best hyperparameter
combination, the model’s performance was
subsequently improved, which is further
discussed in the following section. The results
indicate that proper hyperparameter tuning,
particularly through Random Search, plays a
critical role in optimizing the performance of
deep learning models like DenseNet-201 when
applied to complex image classification tasks.

The main difference between the two
DenseNet-201  architectures lies in the
additional layers in the modified version. The
default DenseNet-201 architecture consists of
the base model followed by global average
pooling and a softmax output layer for
classification. In contrast, the modified version
introduces extra layers: a convolutional layer
with 3x3 filters, a max-pooling layer, and a
dropout layer. These additions aim to enhance
feature extraction, reduce overfitting, and refine
the model’s performance before the final output
layer. Both versions ultimately use a softmax
activation for multi-class classification but
differ in their layer configurations and
complexity.

In the modified model (Figure 8), a
convolutional layer with 3x3 filters and 48
filters is added after the DenseNet-201 base
model. This layer helps in refining the feature
extraction process by applying additional
convolution operations. Following this, a
MaxPooling2D layer is used, which reduces the
dimensions of the feature map by selecting the
maximum value from each 2x2 patch. This
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operation helps retain the most important
features and accelerates the training process.
Additionally, a fully connected layer with 256
units and a dropout layer (with a rate of 0.4) are
introduced to prevent overfitting and improve
generalization. Finally, the model concludes
with a softmax output layer for classification
into 6 classes. Additionally,
GlobalAveragePooling2D is employed, which
calculates the average of all values in the
feature map. This method produces one value
per channel and serves to drastically reduce
dimensionality, thereby enhancing the model's
robustness to spatial variations in the images
[15].

Input Layer Global Average
(224x224x3) Pooling

v L

DenseNet-201 Fully Connected Layer

Base Model (256 units) Modified
DenseNet-201
Convolutional Layer Dropout Layer (0.4)
(3x3, 48 filters)
; [ OutputL
. utput Layer
Mat:o::lng — (6 units, Softmax Predicted Classes
Y Activation)
Input Layer __ | Fully Connected Layer
(224x224x3) (256 units)
. Output L
. utput Layer
oase liodal (6 units, Softmax DensoNeta01
Activation) 3

Y ¥

Global Ay erage Predicted Classes
Pooling

Fig 8. Architecture of the modified model

Compared to the basic DenseNet-201
architecture, these added layers contribute to a
more detailed and robust feature extraction
process, improving classification accuracy.
Following the testing of the model, a simple
system was developed for classifying types of
human skin rashes. The system interface is
shown in Figure 9, which includes a field for
inputting images and displays the classification
results along with the percentage likelihood of
other classes.

Table 7 summarizes the comparison of the
proposed model in this study with the modified
DenseNet-201 architecture and the research
conducted by Bala et al., who utilized the
modified DenseNet-201 architecture.

Sistem Klasifikasi Citra Lesi Manusia

|

.....

Fig 9. Skin rash classification system

Table 7. Comparision With Previous Research

Research Method Accuracy
Modified 93,91%
DenseNet-  (Original

(7] 201 Image) and
- 98,91%
(Augmented
Image)
. DenseNet-  Overall
Basic
Model 201 accuracy of
63%.

Proposed  Modified Overall
Model DenseNet-  accuracy of
201 80%.

CONCLUSION

This study successfully demonstrated the
application of hyperparameter optimization
using Random Search on the DenseNet-201
architecture for classifying skin diseases,
specifically monkeypox, chickenpox, measles,
HFMD, and normal skin. Based on the testing
results, the base DenseNet-201 model achieved
an accuracy of 63%, with the best performance
observed in the Healthy and HFMD classes.
However, the performance in the Chickenpox
and Measles classes still needs improvement,
particularly in recall and F1-score.

On the other hand, the modified model with
hyperparameter optimization through Random
Search showed a significant improvement in
performance, achieving an overall accuracy of
80%, with better precision, recall, and F1-score
across all classes. The best performance was
noted in the HFMD and normal skin classes,
although performance in the Cowpox and
Measles classes still requires further
enhancement.

A comparison with previous research shows
that the modified model in this study
outperforms the basic DenseNet-201 model,
but it is still below the performance of the
DenseNet-201 model modified in Bala et al.
(2023). Nevertheless, this study demonstrates
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hyperparameter  optimization using

Random Search can improve the efficiency and
performance of the model, making it an
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