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Abstrak

Turbin digunakan mengkonversi energy potensial menjadi energy kinetik. Kapasitas
Energy yang dihasilkan dipengaruhi oleh sudu-sudu turbin yang dipasang pada tepi. Sudu
turbin dirancang seorang ahli dengan sudut kelengkungan tertentu. Efisiensi dari turbin
dipengaruhi oleh besarnya sudut, jumlah dan bentuk sudu. Algoritma PSO dapat digunakan
untuk komputasi dan optimasi dari design turbin mikro hidro. Penelitian ini dilakukan
dengan; Pertama, Formula design turbin dioptimasi dengan PSO. Kedua, Data hasil optimasi
PSO diinputkan kedalam jaringan ANN. Ketiga, training dan testing terhadap simulasi
jaringan ANN. Dan yang terakhir, Analisa kesalahanr dari jaringan ANN. Data PSO
sebanyak 180 record, 144 digunakan untuk training dan sisanya 40 untuk testing. Hasil
penelitian ini adalah MAE= 0.4237, MSE=0.3826, dan SSE=165.2654. Error training
terendah didapatkan dengan algoritma pembelajaran trainlm. Kondisi ini membuktikan
bahwa jaringan ANN mampu menghasilkan desain turbin yang optimal.

Kata kunci: Turbin, PSO, ANN, Energi

Abstract

Turbines are used to convert potential energy into kinetic energy. The blades installed on the
turbine edge influence the amount of energy generated. Turbine blades are designed expertly
with specific curvature angles. The number, shape, and angle of the blades influence the
turbine efficiency. The particle swarm optimization (PSO) algorithm can be used to design
and optimize micro-hydro turbines. In this study, we first optimized the formula for turbine
using PSO. Second, we input the PSO optimization data into an artificial neural network
(ANN). Third, we performed ANN network simulation testing and training. Finally, we
conducted ANN network error analysis. From the 180 PSO data records, 144 were used for
training, and the remaining 40 were used for testing. The results of this study are as follows:
MAE = 0.4237, MSE = 0.3826, and SSE = 165.2654. The lowest training error was
achieved when using the trainlm learning algorithm. The results prove that the ANN network
can be used for optimizing turbine designs.

Keywords: Turbine, PSO, ANN, Energy

135


mailto:liejasa@unud.ac.id

136 Jurnal limiah KURSOR Vol. 7, No. 3, Oktober 2014, him. 135-144

INTRODUCTION

Turbines are simple machines used to
convert the flow of water into rotation. A
turbine is commonly circular and made of
wood or iron. Turbine blades are installed in
line on the edge of the turbine wheel [1][2].
The blades are driven by water flowing along
the wheel edge. The recorded wheel shaft
torque, which is equal to the resulting kinetic
energy [4], depends on the magnitude of
water impulse acting on the turbine blades
[3]. A nozzle is used to direct water onto the
blades. The nozzle position is determined
depending on the turbine installation
location. Possible nozzle locations are top,
middle, or bottom of the turbine. Turbine
efficiency is determined by the angle of
curvature, number of blades installed, and
blade shape.

The angle of curvature of the blades is one
of the factors that influence turbine
performance. CA Mockmore and F.
Merryfield built a model Banki turbine and
performed a series of tests on it [5]; their
results indicated that turbine performance
depends on nozzle curvature angle 16°. In
this study, we optimize turbine design
formulas with particle swarm optimization
(PSO) algorithm by using head input (H) and
water discharge (Q) as parameters.

The PSO algorithm is used widely in
optimization processes for transient modeling
[6], power transformer protection schemes
[7], and harmonics estimation [8].
Meanwhile, the artificial neural network
(ANN) algorithm is used for position control
[9]. Combinations of PSO and ANN have
been applied for forecasting  [10],
determining cut-off grade [11], predicting
temperature [12], and recognizing patterns
[13].The ANN algorithm is used widely for
modeling. However, its performance depends
on data  generalization. Significant
characteristics of data generalization pertain
to data correlation. Data correlation reduces
the characteristic of data representation,
which lowers the ability of ANN during
learning. To overcome this disadvantage,
outputs of the principal component analysis
(PCA) algorithm are used for ANN network

training and testing. [14]. Neural network
PCA (NNPCA) is a combination of ANN and
PCA. NNPCA applies the Lavenberg-
Marquadt learning method to speed up
training [15]. IT is used for power
transformer protection [14] and forecasting
greenhouse gas emissions [16].

In this article, the PSO algorithm was used to
optimize the curvature of turbine blade angle
o1 Iin order to achieve maximum turbine
efficiency. The output of PSO optimization
was recorded in an Excel spreadsheet. Of the
recorded PSO data, 80% was for training and
the remaining 20% was for testing. PCA was
used to pre-process the data before they were
input into the ANN. These Data of PSO were
used by NNPCA to design a new Banki
turbine model. NNPCA consists of three
layers: two hidden layer and one output layer.
The learning algorithm used the tribas,
logsig, and tansig activation functions. The
performance of the Lavenberg—Marquadt
algorithm was compared with that of gradient
descent by using three combinations of
activation functions. The learning process
was used to update weights and bias values,
which were selected randomly

RESEARCH METHODS

This method applied in this research was
developed for designing PSO-optimized
Banki turbines. Furthermore, PSO data
outputs were used for NNPCA training and
testing. The network of NNPCA trained
using various learning methods and
activation functions. The simulation results
were analyzed to determine the best network
performance.

PARTICLE SWARM
OPTIMIZATION

birds in a swarm, Kennedy, an American
psychologist, and Eberhart, an electrical
engineer, developed the PSO algorithm [11].
The PSO algorithm is an optimization
technigue and a type of -evolutionary
computation technique. PSO is initialized to
a random solution, and it uses an iterative
search for arriving at the optimal value [12].
Each individual in the group is called a
particle in a D-dimension solution space. The



position vector of the ith particle is
represented as Xi=(Xi1, Xi,...Xin). The best
position found by ith particle in the latest
iteration is denoted by Pi=(pi1, Pi,...Pin),
known as pBest. Accordingly, the best
position found in the entire swarm is denoted
Py = (Pg1, Pga,...Pgn), known as Gbest. The
velocity vector of the ith particle is
represented by V; =(Viy, Vi,....Vin). The
velocity and position of the ith particle are
defined as seen in Equation (1) and Equation

(2).

Vin ZWVm +Clr1(Pin - Xi ) +C,h, (Pgn - Xin) (1)
Xin = Xin +Vin (2)

where w is a constriction factor, ¢; and ¢,
are learning factors, and r; and r, are random
numbers generated consistently in the 0 — 1
range. A linear inertia weight was introduced
by Shi and Eberhart [11]. The weight inertia
decreasing is modified as Equation (3).

Wen —w_max(W="EW_ My (3)
iter _ max

where w_max is the initial inertia weight,
w_min is the final inertia weight, iter_max is
the maximum number of iterations in the
evolution process, and iter is the current
number of iterations. Usually, w_max is set
to 0.9 and w_min is set to 0.4.

OPTIMIZATION FORMULA WITH
PSO

Figure 1 shows the Banki turbine design
used in this study. The input and output
power equations of the Banki turbine are
influenced by the values of H, g, C, o, v, oy,
B1, and B,. The values of constant parameters
such as H, C, and g did not change during
optimization. Therefore, the values of oy, P,
and B, can be optimized by changing the
blade angle to enhance turbine efficiency.

Figure 2 shows a schematic diagram of
turbine design optimization using PSO. PSO
inputs include water discharge (Q) and head
(H). The optimization strategy used in this
study is shown in Figure 3. The optimized
efficiency equation is shown in Equation (4).
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Figure 1. Banki turbine design [5]

H— Parameters
PSO |— designof
Q— turbine

Figure 2. Turbine design using PSO
Optimization

The main factors that influence the efficiency
value obtained using Equation (4) are as
follows:

Vl :C—\ ZgH (5)
_|_C 2
B {(l+l//)}(vlcos “) (6)

2
HI:)in = COQV/Z
C2¢g @)

HP, = [%)[(vl cosa, — U {7(“ v cos p, ))
[s} cos f, (8)

Meanwhile, the inequality constraints are as
follows:

COSa, Min < cose, <CoSa, Max (g

cos 3, min < cos f3; < cos 5, max (10)
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cos 3, min < cos 3, < Cos 3, max (11)
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Figure 3. Proposed Optimization Strategy

According to the block diagram in Figure
3 above, V; is influenced by H, G, and C. In
addition, V; acts the input for U;, Hpi,, and
Hpou. Uy is determined using the values of C,
w, ag, and Vy.

Hpin is determined using the values of Q,
C, G, o, and V4, while Hpout is determined
using the values of Q, Vi, g o, u1, w, a1, fa,
and f,. The difference between Hpi, and
Hpou is the efficiency value. Matlab was used
for simulation during optimization to obtain
the maximum value of efficiency (n) using
the optimized values of oy, B, and B, angles.

ARTIFICIAL NEURAL NETWORK

ANN is a simple model of biological
neurons that use the human brain to make
decisions and arrive at conclusions. An ANN
consists of interconnected processing
elements working together to solve a
particular problem. Neural networks learn
from previous experiences. ANN s
configured for applications such as pattern
recognition or data classification through
learning. Learning is conducted by adjusting
neuronal weights. Each neuron model
consists of processing elements with synaptic

connection inputs and one output. Neurons
can be defined as

Yie= (P(Z X *ij) (12)

where X;, X, ..., Xj is the input signal,
Wi, Wiz, ..., Wiy is the weight of synaptic
neuron k, @ (.) is the activation function, and
yk is the output signal of the neuron.

The architecture of the layered neural
network with feed-forward using PCA is
shown in Figure 4. This neural network
consists of an input layer, two hidden layers,
and one output layer. All layers are fully
connected and are of the feed-forward type.
The output is a non-linear function of the
input and is controlled by a weight, which
was determined in the learning process.
Back-propagation was used in the learning
process for applying the supervised learning
paradigm.

Differentiated activation function values
should be limited during the back-
propagation learning process. The sigmoid
function was the most used activation
function, and its value was limited between 0
(minimum) and 1 (maximum). Before
passing the output signals were to the next
neuron layers, the outputs were summed off
according to each neuronal scale based on the
sigmoid function.

Parameters ANN
design of —) dengan
turbine
PCA New Turbine
design

Figure 4. New turbine design using ANN

The key to error propagation learning lies
in the ability to alter synaptic weights of error
responses. Figure 5 shows a block diagram of
the back-propagation algorithm.

Information provided by the back-
propagation algorithm, in which the errors
are re-filtered by the system, is used to adjust
the relationships among the layers in order to
improve system performance. The error
back-propagation process consists of two
layers network passes, namely, forward pass
and backward pass.

Pass front, an activation pattern wherein
the sensory network is applied to the node



whose effects are delivered through the
network from layer to layer, yielded a set of
outputs in the form of actual network
responses.

Figure 5. Node of ANN turbine model

The actual network response was
subtracted from the desired response to
generate an error signal. The error signal was
propagated backward through the network in
the direction of synaptic connections.
Synaptic weights were adjusted to ensure that
the actual network response was closer to the
desired response. The error of the entire set
was low enough to be acceptable for
minimizing the sum of squares of errors,
where most mean square methods were used.

Hidden Hidden Qutput

Qutput

Figure 6. Block diagram of ANN model
architecture

The developed artificial neural network
consists of three layers (as shown in Figure
6). H and Q serve as inputs, while a4, £; and
[ are the outputs. The Lavenberg—Marquadt
algorithm was employed in the learning
process.

The back-propagation method requires
different activation functions. The sigmoid
type activation function is the most widely
used function for such training [14].
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For input data vectors Zy, Zy, ..., Zq With
m neural network outputs Sy, Sy, ..., Sy,

m
S, = (DZHWiZi (13)
where w = weight, w; = [Wiy, Wiz, ..., Win]
T,and ¢ = non-linear sigmoid activation
function
The adaptation weight of for neuron i is
determined as follows:

AW, =n[S.2, -8, 3 WS, ]
(14)

Error

The training and error measurement
testing were conducted using the mean
absolute error (MAE), sum square error
(SSE), and mean square error (MSE)
methods. The MAE was measured based on
the average error prediction accuracy.

errorMAE = Zrlwe (15)

Where e = error, n = period of numbers.

SSE=> (&) (16)

where g; = Xi-F, X; = actual data period t, F;
= value forecast period t.

The MSE methods evaluate predictions by
squaring, summing, and dividing error values
by the number of observations. This
approach vyields large prediction errors
because the error is squared.

MSE = Zga)z 17

Where: g = Xi-F¢, X; = actual data period t,
F. = Value forecast period t and n =
number of periods.

RESULT AND DISCUSSION

The experiment was initiated by PSO data
reading. The data consisted of 180 records, of
which 80% were used as training data and the
remaining 20% were used as testing data.
The ANN network consisted of 2 inputs and
3 outputs. ANN inputs were water discharge
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(Q) and height (H), while the ANN outputs in
terms of turbine parameters were a4, £ and
B

Before ANN training, the data were pre-
processed with PCA. The goal was to limit
the ANN-trained data.

The ANN network was created using 25
neurons in the first hidden layer, 50 in the
second hidden layer, an activation function
for each layer, and trainlm as the learning
method. Furthermore, the training was
conducted based on the following data
parameters: epochs 20000 and goal 10e-5.

The ANN network training data are listed
in Table 1. However, only 25 of the 144
actual data items are listed owing to page
limitations. The time required for training
depends on the amount of training data,
expected goals, and momentum values.
During training, regression, state of training,
and network performance can be observed.

Table 1. Data training ANN

After ANN network training, we
commenced testing. The results of ANN
network data testing are summarized in Table
2. The test data was read by the ANN
network with each node containing
determined bias values. The training data
input to the ANN network are listed in Table
2 below.

Table 2. Data testing of ANN?

Data H Q oy B B2
1 28 30 1500349  28,94485 29,6193
2 13 30 15,00153  30,15477 29,5736
3 1 40 15,00377 30,8157  31,28478
4 46 30 15,00104  30,09418  29,96393
5 38 3B 15,0005  30,86848  29,11059
6 32 40 1500415 2861786  31,90379
7 50 30 1500385 2817254  29,84671
8 39 35 15,0004  29,00195  30,96754
9 2 3 15,00037  29,02552  30,81902
10 48 35 15,00283 29,711  30,00177
11 19 40 15,00205  29,17531 29,9392
12 4 40 15,00508  28,78239  30,85641
13 30 30 15,00045  29,69512  30,68776
14 4 30 15,00116  28,00599  31,01034
15 2340 1500101  28,26018  31,94735
16 21 30 1500028  30,10534  29,62567
17 41 30 1500212  30,09672  29,97349
18 42 30 15,00256  30,11445  29,16756
19 7 30 15,00279  30,16723  29,94206
20 37 40 15,00062  28,84708  31,07606
21 56 40 15,0006  28,53736  29,97849
22 51 40 1500107 29,96171  31,58335
23 58 35 15,0018  30,53878  29,58849
24 20 35 1500212  30,09672  29,97349
25 53 40 15,00115  28,35935  31,17255

Data H Q oy B B2
145 23 30 1500284  29,99236  31,82703
146 49 30 15,00159 28,91937 30,35536
147 3340 15,00006  30,76733  30,13301
148 3 35 15,00029  28,36294  31,65149
149 2135 1500094  30,19596  30,72177
150 47 30 15,00041 29,8677 31,8705
151 5 30 15,00338 30,03695 31,89771
152 27 40 15,00019 28,80556 29,2072
153 34 40 15,00176 28,38404 29,92039
154 2 30 15,00232 28,14753 29,49773
155 4% 3 1500509  28,38879  29,20653
156 47 3 15,00024  29,13715 30,0923
157 16 40 15,00286 29,8888 31,50794
158 52 35 15,00228 30,67071 30,52028
159 8 35 15,00072 30,94923 30,74546
160 35 30 1500049  28,44285  31,80416
161 57 35 15,0003  30,78191 31,4074
162 19 30 15,0003  30,40495 31,5428
163 9 30 15,0008  28,90849  30,78821
164 28 35 15,00159  28,91937  30,35536
165 37 30 15,00067 28,1255 31,3103
166 9 40 15,00203 30,6778  30,58792
167 36 30 15,00095 30,23006 29,03487
168 59 40 15,00237 28,39553 31,53792
169 14 30 15,00006 30,76733 30,13301

2 Displaying 25 of 40

In this study, we applied the Lavenberg-

D) Displaying 25 of 144

Marquadt learning algorithm compared with
gradient descent. We applied the tribas,
logsig, and tansig activation functions. The
experiment was conducted on every layer
variation of the model. In this study, we
employed various combinations of the tribas,
logsig, and tansig activation functions. In
addition, we compared the learning
algorithms ~ trainlm and  traingd, as
summarized in Table 3.



Table 3. Activation function Model ANN

Activation function
Model

Hidenl  Hiden2 output

Learning
Methods

M1 Tribas  Logsig  Tansig traingd
M2 Tribas Logsig Tansig trainlm
M3 Tribas Tansig Logsig traingd
M4 Tribas Tansig Logsig trainim
M5 Tansig  Logsig Tribas traingd
M6 Tansig Logsig Tribas trainlm
M7 Tansig Tribas Logsig traingd
M8 Tansig Tribas Logsig trainlm
M9 Logsig Tansig Tribas traingd
M10 Logsig Tansig Tribas trainlm
M11 Logsig Tribas Tansig traingd
M12 Logsig Tribas Tansig trainim

We analyzed the ANN data outputs to
find the smallest values of MSE, MAE and
SSE. The Lavenberg-Marquadt algorithm
was applied to the ANN to compute the exact
weight of each node. After obtaining the
smallest MSE value, we tested the value on
existing data. The NNPCA output data were
analyzed to obtain optimum turbine design
parameters by using the ANN.

From on Figure 7, the lowest MSE
training value was achieved using M2
(0.3352) and the highest using M8 (0.4482).
The lowest MAE training value was achieved
using M2 (0.3996) and the highest using M3
(0.4639). The lowest MSE testing value was
achieved using M5 (0.5427), while the
highest was achieved using M11 (0.6505).
The lowest MAE was achieved using M5
(0.5294), while the highest was achieved
using M9 (0.5601). These findings indicated
that M2 was the best model. The conditions
under M2 resulted in the lowest MSE value
in training in comparison with those under
other models. Thus, these conditions were
regarded as optimal for running the ANN.
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Figure 7. MSE and MAE: testing and training

According to Figure 8, the lowest
SSE training value was achieved using M1
(144.8293) and the highest using M3
(193.946), while the lowest SSE testing
value was achieved using M5 (58.6063) and
highest using M11 (70.2545). These findings
indicated that based on training values, M1
was the best model. However, based on the
testing values, M2 was the best model.
Considering the MAE, MSE and SSE values,
M2 was regarded as the best ANN network
model for turbine design.

250 -
—O— SSE Testing e+ -+ SSE Training
200
".-.._....--..-,"',.-.-..-..-.
n E
“., _-' [
150 -+ -
100 +
50
0

Figure 8. SSE testing and training

NNPCA training process regression when
using M2 is shown in Figure 9. The figure
indicates that the data gathered on the blue
line run as expected. Figures 10 and 11
describe NNPCA state training and MSE at
383 epochs.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1l M12
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Training: R=0.54136

35y Fit
sl v=T
25}
sl
15}

Output~=0,22"Target+0.019

Target

Figure 9. Regression of NNPCA

The ANN network used here was
based on a three-layer specification. The first
hidden layer was composed of 25 neurons,
while the second hidden layer was composed
of 50 neurons. The tribas, logsig, and tansig
activation functions, as well as the trainlm
learning method, were applied to the ANN.

Gradient = 0.044838, at epoch 383

gradient
s
L

10° L L L L L

Mu = 100000000000, at epoch 383

20— 4

Validation Checks = 0, at epoch 383

val fail

0 50 100 150 200 250 300 350
383 Epochs

Figure 10. Training State of NNPCA

Best Training Performance is NaM at epoch 382

Mean Squared Eror (mse)

10°L

L . I L I . L
0 50 100 150 200 250 300 350
383 Epochs

Figure 11. MSE of NNPCA
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Figure 12 Training result with NNPCA
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Figure 13. Testing result with NNPCA

The repetition of epochs was 20000 with a
target of error 10-5. Figure 12 shows a
comparison of actual data and al training
data. For validation, Figure 13 shows a
comparison al testing using NNPCA with
actual data. After training and testing, the
following results were obtained: training
MAE: 0.4237, training MSE: 0.3826, training
SSE: 165.2654; testing MAE: 0.5660, testing
MSE: 0.6696, and testing SSE: 72.3167.

CONCLUSION

The PSO algorithm was used to optimize
the Banki turbine design process. Using H
and Q as input parameters, we obtained the
values of a3, f1, and f,. The obtained
parameter values were the most optimal for
achieving the highest efficiency because the
blade angle is the most prominent parameter
governing the efficiency of Banki turbines.

NNPCA is an artificial neural network
that applies PCA for pre-processing data.
NNPCA was used to input the existing

[
40



knowledge in the PSO-optimized data into an
ANN network. The process of learning and
testing was performed using tribas, logsig,
and tansig. Tansig proved to be the best
activation function, while the Lavenberg-
Marquadt learning algorithm could generate
the lowest MAE and MSE values.
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