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Abstrak 
Turbin digunakan mengkonversi energy potensial  menjadi energy kinetik. Kapasitas 
Energy yang dihasilkan dipengaruhi oleh  sudu-sudu turbin yang dipasang pada tepi. Sudu 
turbin dirancang seorang ahli dengan sudut kelengkungan tertentu. Efisiensi dari turbin 
dipengaruhi oleh besarnya sudut, jumlah dan bentuk sudu. Algoritma PSO dapat digunakan 
untuk komputasi dan optimasi dari design turbin mikro hidro. Penelitian ini  dilakukan 
dengan; Pertama, Formula design turbin dioptimasi dengan PSO. Kedua, Data hasil optimasi 
PSO diinputkan kedalam jaringan ANN. Ketiga, training dan testing terhadap simulasi 
jaringan ANN. Dan yang terakhir, Analisa kesalahanr dari  jaringan ANN. Data PSO 
sebanyak 180 record, 144 digunakan untuk training dan sisanya 40 untuk testing.  Hasil 
penelitian ini adalah  MAE= 0.4237, MSE=0.3826,  dan SSE=165.2654. Error training  
terendah didapatkan dengan algoritma pembelajaran  trainlm.  Kondisi ini membuktikan 
bahwa  jaringan ANN mampu menghasilkan desain turbin yang optimal. 
 
Kata kunci: Turbin, PSO, ANN, Energi  

 

Abstract 

Turbines are used to convert potential energy into kinetic energy. The blades installed on the 
turbine edge influence the amount of energy generated. Turbine blades are designed expertly 
with specific curvature angles. The number, shape, and angle of the blades influence the 
turbine efficiency. The particle swarm optimization (PSO) algorithm can be used to design 
and optimize micro-hydro turbines. In this study, we first optimized the formula for turbine 
using PSO. Second, we input the PSO optimization data into an artificial neural network 
(ANN). Third, we performed ANN network simulation testing and training. Finally, we 
conducted ANN network error analysis. From the 180 PSO data records, 144 were used for 
training, and the remaining 40 were used for testing. The results of this study are as follows: 
MAE = 0.4237, MSE = 0.3826, and SSE = 165.2654. The lowest training error was 
achieved when using the trainlm learning algorithm. The results prove that the ANN network 
can be used for optimizing turbine designs. 
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INTRODUCTION 

Turbines are simple machines used to 
convert the flow of water into rotation. A 
turbine is commonly circular and made of 
wood or iron. Turbine blades are installed in 
line on the edge of the turbine wheel [1][2]. 
The blades are driven by water flowing along 
the wheel edge. The recorded wheel shaft 
torque, which is equal to the resulting kinetic 
energy [4], depends on the magnitude of 
water impulse acting on the turbine blades 
[3]. A nozzle is used to direct water onto the 
blades. The nozzle position is determined 
depending on the turbine installation 
location. Possible nozzle locations are top, 
middle, or bottom of the turbine. Turbine 
efficiency is determined by the angle of 
curvature, number of blades installed, and 
blade shape. 

 
The angle of curvature of the blades is one 

of the factors that influence turbine 
performance. CA Mockmore and F. 
Merryfield built a model Banki turbine and 
performed a series of tests on it [5];  their 
results indicated that turbine performance 
depends on nozzle curvature angle 16°. In 
this study, we optimize turbine design 
formulas with particle swarm optimization 
(PSO) algorithm by using head input (H) and 
water discharge (Q) as parameters. 

 
The PSO algorithm is used widely in 

optimization processes for transient modeling 
[6], power transformer protection schemes 
[7], and harmonics estimation [8]. 
Meanwhile, the artificial neural network 
(ANN) algorithm is used for position control 
[9]. Combinations of PSO and ANN have 
been applied for forecasting [10], 
determining cut-off grade [11], predicting 
temperature [12], and recognizing patterns 
[13].The ANN algorithm is used widely for 
modeling. However, its performance depends 
on data generalization. Significant 
characteristics of data generalization pertain 
to data correlation. Data correlation reduces 
the characteristic of data representation, 
which lowers the ability of ANN during 
learning. To overcome this disadvantage, 
outputs of the principal component analysis 
(PCA) algorithm are used for ANN network 

training and testing. [14]. Neural network 
PCA (NNPCA) is a combination of ANN and 
PCA. NNPCA applies the Lavenberg–
Marquadt learning method to speed up 
training [15]. IT is used for power 
transformer protection [14] and forecasting 
greenhouse gas emissions [16]. 
In this article, the PSO algorithm was used to 
optimize the curvature of turbine blade angle 
α1 in order to achieve maximum turbine 
efficiency. The output of PSO optimization 
was recorded in an Excel spreadsheet. Of the 
recorded PSO data, 80% was for training and 
the remaining 20% was for testing. PCA was 
used to pre-process the data before they were 
input into the ANN. These Data of PSO were 
used by NNPCA to design a new Banki 
turbine model. NNPCA consists of three 
layers: two hidden layer and one output layer. 
The learning algorithm used the tribas, 
logsig, and tansig activation functions. The 
performance of the Lavenberg–Marquadt 
algorithm was compared with that of gradient 
descent by using three combinations of 
activation functions. The learning process 
was used to update weights and bias values, 
which were selected randomly 

RESEARCH METHODS 

This method applied in this research was 
developed for designing PSO-optimized 
Banki turbines. Furthermore, PSO data 
outputs were used for NNPCA training and 
testing. The network of NNPCA trained 
using various learning methods and 
activation functions. The simulation results 
were analyzed to determine the best network 
performance.  

 
PARTICLE  SWARM  
OPTIMIZATION 

 
birds in a swarm, Kennedy, an American 
psychologist, and Eberhart, an electrical 
engineer, developed the PSO algorithm [11]. 
The PSO algorithm is an optimization 
technique and a type of evolutionary 
computation technique. PSO is initialized to 
a random solution, and it uses an iterative 
search for arriving at the optimal value [12]. 
Each individual in the group is called a 
particle in a D-dimension solution space. The 
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position vector of the ith particle is 
represented as Xi=(Xi1, Xi2,…Xin). The best 
position found by ith particle in the latest 
iteration is denoted by Pi=(pi1, Pi2,…Pin), 
known as pBest. Accordingly, the best 
position found in the entire swarm is denoted 
Pg = (Pg1, Pg2,…Pgn), known as Gbest. The 
velocity vector of the ith particle is 
represented by Vi =(Vi1, Vi2,….Vin). The 
velocity and position of the ith particle are 
defined as seen in Equation (1) and Equation 
(2). 

 
)()( 2211 ingniinmin XPrcXPrcwVV    (1) 

ininin VXX       (2) 
 

where w is a constriction factor, c1 and c2 
are learning factors, and r1 and r2 are random 
numbers generated consistently in the 0 − 1 
range. A linear inertia weight was introduced 
by Shi and Eberhart [11]. The weight inertia 
decreasing is modified as Equation (3). 
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where w_max is the initial inertia weight, 

w_min is the final inertia weight, iter_max is 
the maximum number of iterations in the 
evolution process, and iter is the current 
number of iterations. Usually, w_max is set 
to 0.9 and w_min  is set to 0.4. 
 
OPTIMIZATION FORMULA WITH 
PSO 

 
Figure 1 shows the Banki turbine design 

used in this study. The input and output 
power equations of the Banki turbine are 
influenced by the values of H, g, C, ω, ψ, α1, 
β1, and β2. The values of constant parameters 
such as H, C, and g did not change during 
optimization. Therefore, the values of α1, β1, 
and β2 can be optimized by changing the 
blade angle to enhance turbine efficiency.  

Figure 2 shows a schematic diagram of 
turbine design optimization using PSO. PSO 
inputs include water discharge (Q) and head 
(H). The optimization strategy used in this 
study is shown in Figure 3. The optimized 
efficiency equation is shown in Equation (4). 
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Figure 1. Banki turbine design [5] 
 

 
Figure 2. Turbine design using PSO 

Optimization 
 

   
The main factors that influence the efficiency 
value obtained using Equation (4) are as 
follows: 
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Meanwhile, the inequality constraints are as 
follows:  

       maxcoscosmincos 111     (9) 

      maxcoscosmincos 111    (10) 
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 Figure 3. Proposed Optimization Strategy 
 
According to the block diagram in Figure 

3 above, V1 is influenced by H, G, and C. In 
addition, V1 acts the input for U1, Hpin, and 
Hpout. U1 is determined using the values of C, 
ψ, α1, and V1. 

Hpin is determined using the values of Q, 
C, G, ω, and V1, while Hpout is determined 
using the values of Q, V1, g, ω, u1, ψ, α1, β1, 
and β2. The difference between Hpin and 
Hpout is the efficiency value. Matlab was used 
for simulation during optimization to obtain 
the maximum value of efficiency (η) using 
the optimized values of α1, β1, and β2 angles. 
 
ARTIFICIAL NEURAL NETWORK 

 
ANN is a simple model of biological 

neurons that use the human brain to make 
decisions and arrive at conclusions. An ANN 
consists of interconnected processing 
elements working together to solve a 
particular problem. Neural networks learn 
from previous experiences. ANN is 
configured for applications such as pattern 
recognition or data classification through 
learning. Learning is conducted by adjusting 
neuronal weights. Each neuron model 
consists of processing elements with synaptic 

connection inputs and one output. Neurons 
can be defined as 

 

          kjjk WXy *              (12) 

 
where X1, X2, …, Xj is the input signal, 

Wk1, Wk2, …, WkJ is the weight of synaptic 
neuron k, φ (.) is the activation function, and 
yk is the output signal of the neuron. 

The architecture of the layered neural 
network with feed-forward using PCA is 
shown in Figure 4. This neural network 
consists of an input layer, two hidden layers, 
and one output layer. All layers are fully 
connected and are of the feed-forward type. 
The output is a non-linear function of the 
input and is controlled by a weight, which 
was determined in the learning process. 
Back-propagation was used in the learning 
process for applying the supervised learning 
paradigm.  

Differentiated activation function values 
should be limited during the back-
propagation learning process. The sigmoid 
function was the most used activation 
function, and its value was limited between 0 
(minimum) and 1 (maximum). Before 
passing the output signals were to the next 
neuron layers, the outputs were summed off 
according to each neuronal scale based on the 
sigmoid function. 

 

 
Figure 4. New turbine design using ANN 
 
The key to error propagation learning lies 

in the ability to alter synaptic weights of error 
responses. Figure 5 shows a block diagram of 
the back-propagation algorithm. 

Information provided by the back-
propagation algorithm, in which the errors 
are re-filtered by the system, is used to adjust 
the relationships among the layers in order to 
improve system performance. The error 
back-propagation process consists of two 
layers network passes, namely, forward pass 
and backward pass. 

Pass front, an activation pattern wherein 
the sensory network is applied to the node 
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whose effects are delivered through the 
network from layer to layer, yielded a set of 
outputs in the form of actual network 
responses.  

 

1

1

2

 
Figure 5. Node of ANN turbine model 
 
The actual network response was 

subtracted from the desired response to 
generate an error signal. The error signal was 
propagated backward through the network in 
the direction of synaptic connections. 
Synaptic weights were adjusted to ensure that 
the actual network response was closer to the 
desired response. The error of the entire set 
was low enough to be acceptable for 
minimizing the sum of squares of errors, 
where most mean square methods were used. 

 

  
Figure 6. Block diagram of ANN model 

architecture 
 

The developed artificial neural network 
consists of three layers (as shown in Figure 
6). H and Q serve as inputs, while α1, β1 and 
β2 are the outputs. The Lavenberg–Marquadt 
algorithm was employed in the learning 
process. 

The back-propagation method requires 
different activation functions. The sigmoid 
type activation function is the most widely 
used function for such training [14]. 

For input data vectors Z1, Z2, …, Zd with 
m neural network outputs S1, S2, …, Sm, 

           


m

i iiZWS
11 

                  (13)
 

where w = weight, wi = [wi1, wi2, …, wim] 
T, and φ = non-linear sigmoid activation 
function 
The adaptation weight of for neuron i is 
determined as follows: 
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Error 

 
The training and error measurement 

testing were conducted using the mean 
absolute error (MAE), sum square error 
(SSE), and mean square error (MSE) 
methods. The MAE was measured based on 
the average error prediction accuracy.  
 

n
e

errorMAE             (15) 

 
Where e = error, n = period of numbers. 

 
  2

ieSSE              (16) 
 
where ei = Xt-Ft, Xt = actual data period t, Ft 

= value forecast period t.  
 

The MSE methods evaluate predictions by 
squaring, summing, and dividing error values 
by the number of observations. This 
approach yields large prediction errors 
because the error is squared. 

n
e

MSE i
2)(  (17) 

 
Where: ei = Xt-Ft, Xt = actual data period t, 
Ft = Value forecast period t and n = 
number of periods. 

 
RESULT AND DISCUSSION  

 
The experiment was initiated by PSO data 

reading. The data consisted of 180 records, of 
which 80% were used as training data and the 
remaining 20% were used as testing data. 
The ANN network consisted of 2 inputs and 
3 outputs. ANN inputs were water discharge 
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(Q) and height (H), while the ANN outputs in 
terms of turbine parameters were α1, β1 and 
β2. 

Before ANN training, the data were pre-
processed with PCA. The goal was to limit 
the ANN-trained data. 

The ANN network was created using 25 
neurons in the first hidden layer, 50 in the 
second hidden layer, an activation function 
for each layer, and trainlm as the learning 
method. Furthermore, the training was 
conducted based on the following data 
parameters: epochs 20000 and goal 10e-5. 

The ANN network training data are listed 
in Table 1. However, only 25 of the 144 
actual data items are listed owing to page 
limitations. The time required for training 
depends on the amount of training data, 
expected goals, and momentum values. 
During training, regression, state of training, 
and network performance can be observed. 

 
Table 1. Data training ANN 1) 

 
Data H Q α1 β1 β2 

1 28 30 15,00349 28,94485 29,6193 

2 13 30 15,00153 30,15477 29,5736 

3 1 40 15,00377 30,8157 31,28478 

4 46 30 15,00104 30,09418 29,96393 

5 38 35 15,0005 30,86848 29,11059 

6 32 40 15,00415 28,61786 31,90379 

7 50 30 15,00385 28,17254 29,84671 

8 39 35 15,0004 29,00195 30,96754 

9 2 35 15,00037 29,02552 30,81902 

10 48 35 15,00283 29,711 30,00177 

11 19 40 15,00205 29,17531 29,9392 

12 4 40 15,00508 28,78239 30,85641 

13 30 30 15,00045 29,69512 30,68776 

14 4 30 15,00116 28,00599 31,01034 

15 23 40 15,00101 28,26018 31,94735 

16 21 30 15,00028 30,10534 29,62567 

17 41 30 15,00212 30,09672 29,97349 

18 42 30 15,00256 30,11445 29,16756 

19 7 30 15,00279 30,16723 29,94206 

20 37 40 15,00062 28,84708 31,07606 

21 56 40 15,0006 28,53736 29,97849 

22 51 40 15,00107 29,96171 31,58335 

23 58 35 15,0018 30,53878 29,58849 

24 20 35 15,00212 30,09672 29,97349 

25 53 40 15,00115 28,35935 31,17255 
1) Displaying 25 of 144 
 

After ANN network training, we 
commenced testing. The results of ANN 
network data testing are summarized in Table 
2. The test data was read by the ANN 
network with each node containing 
determined bias values. The training data 
input to the ANN network are listed in Table 
2 below. 

 
Table 2. Data testing of ANN2) 

 
Data H Q α1 β1 β2 

145 23 30 15,00284 29,99236 31,82703 

146 49 30 15,00159 28,91937 30,35536 

147 33 40 15,00006 30,76733 30,13301 

148 25 35 15,00029 28,36294 31,65149 

149 21 35 15,00094 30,19596 30,72177 

150 47 30 15,00041 29,8677 31,8705 

151 5 30 15,00338 30,03695 31,89771 

152 27 40 15,00019 28,80556 29,2072 

153 34 40 15,00176 28,38404 29,92039 

154 2 30 15,00232 28,14753 29,49773 

155 46 35 15,00509 28,38879 29,20653 

156 47 35 15,00024 29,13715 30,0923 

157 16 40 15,00286 29,8888 31,50794 

158 52 35 15,00228 30,67071 30,52028 

159 8 35 15,00072 30,94923 30,74546 

160 35 30 15,00049 28,44285 31,80416 

161 57 35 15,0003 30,78191 31,4074 

162 19 30 15,0003 30,40495 31,5428 

163 9 30 15,0008 28,90849 30,78821 

164 28 35 15,00159 28,91937 30,35536 

165 37 30 15,00067 28,1255 31,3103 

166 9 40 15,00203 30,6778 30,58792 

167 36 30 15,00095 30,23006 29,03487 

168 59 40 15,00237 28,39553 31,53792 

169 14 30 15,00006 30,76733 30,13301 
2) Displaying 25 of 40 

 
In this study, we applied the Lavenberg–

Marquadt learning algorithm compared with 
gradient descent. We applied the tribas, 
logsig, and tansig activation functions. The 
experiment was conducted on every layer 
variation of the model. In this study, we 
employed various combinations of the tribas, 
logsig, and tansig activation functions. In 
addition, we compared the learning 
algorithms trainlm and traingd, as 
summarized in Table 3. 
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Table 3. Activation function Model ANN 
 

Model 
Activation function Learning 

Methods Hiden1 Hiden2 output 

M1 Tribas Logsig Tansig traingd 

M2 Tribas Logsig Tansig trainlm 

M3 Tribas Tansig Logsig traingd 

M4 Tribas Tansig Logsig trainlm 

M5 Tansig Logsig Tribas traingd 

M6 Tansig Logsig Tribas trainlm 

M7 Tansig Tribas Logsig traingd 

M8 Tansig Tribas Logsig trainlm 

M9 Logsig Tansig Tribas traingd 

M10 Logsig Tansig Tribas trainlm 

M11 Logsig Tribas Tansig traingd 

M12 Logsig Tribas Tansig trainlm 

 
We analyzed the ANN data outputs to 

find the smallest values of MSE, MAE and 
SSE. The Lavenberg-Marquadt algorithm 
was applied to the ANN to compute the exact 
weight of each node. After obtaining the 
smallest MSE value, we tested the value on 
existing data. The NNPCA output data were 
analyzed to obtain optimum turbine design 
parameters by using the ANN. 

From on Figure 7, the lowest MSE 
training value was achieved using M2 
(0.3352) and the highest using M8 (0.4482). 
The lowest MAE training value was achieved 
using M2 (0.3996) and the highest using M3 
(0.4639). The lowest MSE testing value was 
achieved using M5 (0.5427), while the 
highest was achieved using M11 (0.6505). 
The lowest MAE was achieved using M5 
(0.5294), while the highest was achieved 
using M9 (0.5601). These findings indicated 
that M2 was the best model. The conditions 
under M2 resulted in the lowest MSE value 
in training in comparison with those under 
other models. Thus, these conditions were 
regarded as optimal for running the ANN. 

 

 
Figure 7. MSE and MAE: testing and training 

 
According to Figure 8, the lowest 

SSE training value was achieved using M1 
(144.8293) and the highest using M3 
(193.946), while the lowest SSE testing  
value was achieved using M5 (58.6063) and 
highest using M11 (70.2545). These findings 
indicated that based on training values, M1 
was the best model. However, based on the 
testing values, M2 was the best model. 
Considering the MAE, MSE and SSE values, 
M2 was regarded as the best ANN network 
model for turbine design. 
 

 
Figure 8. SSE testing and training 
 

NNPCA training process regression when 
using M2 is shown in Figure 9. The figure 
indicates that the data gathered on the blue 
line run as expected. Figures 10 and 11 
describe NNPCA state training and MSE at 
383 epochs. 
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Figure 9. Regression of NNPCA 

 
The ANN network used here was 

based on a three-layer specification. The first 
hidden layer was composed of 25 neurons, 
while the second hidden layer was composed 
of 50 neurons. The tribas, logsig, and tansig 
activation functions, as well as the trainlm 
learning method, were applied to the ANN. 

 
 
Figure 10. Training State of NNPCA 
 

 
Figure 11. MSE of NNPCA 

 
Figure 12 Training result with NNPCA 

 

 
Figure 13. Testing result with NNPCA 

 
The repetition of epochs was 20000 with a 

target of error 10–5. Figure 12 shows a 
comparison of actual data and α1 training 
data. For validation, Figure 13 shows a 
comparison α1 testing using NNPCA with 
actual data. After training and testing, the 
following results were obtained: training 
MAE: 0.4237, training MSE: 0.3826, training 
SSE: 165.2654; testing MAE: 0.5660, testing 
MSE: 0.6696, and testing SSE: 72.3167. 

 
CONCLUSION 

 
The PSO algorithm was used to optimize 

the Banki turbine design process. Using H 
and Q as input parameters, we obtained the 
values of α1, β1, and β2. The obtained 
parameter values were the most optimal for 
achieving the highest efficiency because the 
blade angle is the most prominent parameter 
governing the efficiency of Banki turbines. 

NNPCA is an artificial neural network 
that applies PCA for pre-processing data. 
NNPCA was used to input the existing 
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knowledge in the PSO-optimized data into an 
ANN network. The process of learning and 
testing was performed using tribas, logsig, 
and tansig. Tansig proved to be the best 
activation function, while the Lavenberg–
Marquadt learning algorithm could generate 
the lowest MAE and MSE values. 
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