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Abstract

Brain tumors are capable of developing in individuals of all ages and can originate
from brain tissue in various shapes and sizes. As a result, it is critical to quickly identify
patients in order to expedite treatment. Magnetic Resonance Imaging (MRI) of the brain
is an appropriate technique for identifying chronic conditions, including tumors. Deep
learning methodologies have suggested numerous medical analysis strategies for health
monitoring and brain tumor identification. This study used a modified version of
DenseNetl21 to accurately categorize three different forms of brain tumors:
meningioma, pituitary, and glioma. Following the last transition layer, the
DenseNetl121 modification adds DropOut and GlobalAveragePooling layers. We
determine the optimal hyperparameters that yield the highest performance by
comparing several factors, including dropout, epoch, optimizer, and activation
function. Evaluation of classification performance involves a comparison between
Basic CNN and Basic DenseNet. Results of the analysis show that the modified
DenseNet121 model works best with the following ideal hyperparameters: ADAM
optimizer, Softmax activation, 150 epochs of training, and an 0.8 dropout rate. The
performance results show an accuracy value of 0.9782, exceeding previous research

findings.
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INTRODUCTION

Brain tumors are distinguished by the
uncontrolled and aberrant proliferation of cells
in brain tissue, which results in the disruption
of normal brain function [1]. Brain tumors can
develop in people of every age and can
originate in brain tissue, presenting a diverse
array of shapes and sizes. Brain malignancies
are divided into two categories according to
their original site: primary tumors and
secondary malignancies [2]. Primary tumors
arise within the brain tissue, whereas secondary
malignancies metastasize from other regions of
the body and enter the brain tissue via the
circulation [3]. Malignant brain tumors,
including glioma and meningioma, can be fatal
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if not detected in their early phases [4]. The
World Health Organization (WHO) classifies
brain tumors into four distinct groups. The
Global Cancer Observatory recorded around
308,162 cases of brain tumors worldwide in
2020. The data shows that Asia has the highest
occurrence rate, namely at 54.2% [5].

Based on the information provided, it is
crucial to promptly diagnose people who are
contaminated. Brain tumors are believed to be
more effectively detected by MRI [6]. Brain
tumors are composed of soft tissue and can only
be detected with the use of an MRI scan [7].
MRI scans are highly sensitive and provide
detailed picture information, enabling them to
differentiate between soft and hard tissue in the
brain [&] [9].
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In the process of diagnosing brain tumors,
clinicians frequently employ biopsies and
physical observations as diagnostic procedures
[10]. Although the manual method is error-
prone, the biopsy procedure (including
laboratory testing) takes around 10-15 days
[11]. Alternative approaches with a reduced
error rate and decreased processing time are
necessary to aid physicians in their decision-
making. Computer-aided Diagnosis (CAD)
enhances the precision of patient diagnosis,
leading to improved early detection and
ultimately enhancing the patient's quality of
life [12] [13].

Using a technique for categorizing brain
malignancies on MRI images, CAD-assisted
brain tumor diagnosis is presently being
implemented. Machine Learning (ML) is an
often employed technique. In 2017, Vani et al.
employed the Support Vector Machine (SVM)
method to categorize brain cancers into two
categories: tumors present and tumors absent,
achieving a 80% accuracy [14]. The
researchers in Zaw's study investigated the
efficacy of decision tree and naive Bayes
algorithms in the classification of brain
tumors. The classification findings
demonstrate that decision trees provide
superior performance compared to naive
Bayes, with an accuracy of 94% [15]. Despite
the remarkable efficacy of machine learning
methods, including classification, in numerous
applications, several drawbacks must be taken
into account, one of which is the labor-
intensive process of feature extraction that
must be performed manually [16]. In order to
create the most effective features, it 1is
necessary to do research on different
combinations of features.

A Convolutional Neural Network (CNN) is
a Deep Learning technique employed for the
examination and categorization of digital
picture data [17] [18]. CNN possesses the
benefit of automated feature extraction, as
opposed to machine learning which still
requires operator intervention [19]. CNN
achieves the highest level of accuracy in
classifying images [20] [21]. Sarkar did a
study utilizing CNN to classify three distinct
forms of brain tumors, achieving a high
accuracy rate of 91% [22]. In 2014, a novel
CNN method was developed to categorize
three types of tumors, with a precision rate of
96.56% [23].

Prior studies have shown that the CNN
architecture is effective in classifying images.
Nevertheless, the CNN architecture faces
numerous obstacles. An issue frequently
encountered in the training of deep networks is
the loss of gradient during the process of
backtracking [24]. The training process is
impeded by the fact that gradients in CNNs
can become exceedingly small when
approaching the initial layers [25]. CNNs
suffer from the issue that the features acquired
by the initial layers are not effectively
exploited by the subsequent layers [26]. CNNs
often possess a large number of parameters
due to the interconnectedness between each
layer and all the layers that follow it [27].
Using parameters in this way can be
inefficient, particularly in deep models that
include numerous layers. Consequently, the
implemented model was adjusted to address
this issue. In their 2017 study, Huang et al.
[28] demonstrated that LeNet CNN fail to
fully use the characteristics of preceding
neural network layers. Huang et al. introduces
a novel DenseNet (Dense Convolutional
Network) that effectively utilizes training
features.

DenseNet employs direct connections
between every pair of layers, enabling
gradients to propagate straight to preceding
layers with minimal attenuation, hence
mitigating the issue of vanishing gradients
[29]. In DenseNet, the direct connections
between each layer and all the layers above it
allow for the direct utilization of information
learned by early levels by deeper layers [30].
DenseNet achieves parameter efficiency by
recycling features from each layer through
direct connections, resulting in a reduction in
the number of parameters [31].

The study employed DenseNetl2]1 to
categorize three distinct categories of brain
tumors: meningioma, glioma, and pituitary. In
this study, we enhance the DenseNetl21
design by incorporating Dropout and
GlobalAveragePooling layers following the
last transition layer. The purpose of
incorporating this layer is to enhance the
representation of features and mitigate the
issue of overfitting. Various hyperparameters,
such as epoch, optimizer, and activation
function, are compared to determine the ideal
hyperparameters that result in the maximum
level of precision. We will assess the
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performance by comparing it with several
architectures, including Basic CNN and Basic
DenseNet.

MATERIAL AND METHODS

The research methodology initiates with
acquiring a brain MRI image dataset, which is
subsequently subjected to data processing via
resizing the images to dimensions of 240x240.
The data that has been processed is divided
into two separate datasets: one for training and
one for testing. The ratio of the training dataset
to the testing dataset is 80:20. Performance,
accuracy, precision, recall, and specificity
were subsequently computed for the confusion
matrix by the DenseNetl21 model. Data
testing represents the ultimate phase. Refer to
Figure 1 for additional information.

Preprocessing
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Fig 1. Proposed method

Brain Tumor Dataset

The dataset utilized in this study was
collected from the Chandrabhaga Clinic and
Nursing Home in 2019. It consisted of 3264
MRI images specifically focused on the brain.
The dataset employed in this study was
annotated for each class by professionals. The
classifications or classes are categorized into
three groups: meningioma, pituitary, and
glioma.
MRI scans display cross-sectional images in
the axial, sagittal, and coronal planes, which
are subsequently combined into a single image
for each category. The total number of images
for Meningioma Tumors was 937, for Pituitary
Tumors it was 901, and for Glioma Tumors it
was 926. Figure 2 displays an example dataset.

(a)Mengioma  (b)Pituitary

(c)Glioma
Fig 2. Sample data of brain tumor dataset
DenseNet

i

Fig 3. DenseNet architecture [30]

DenseNet is a cutting-edge CNN structure
specifically developed for the purpose of
detecting visual object. It stands out for its
ability to achieve high performance with a
reduced number of parameters. The
introduction of Densenet was place at the 2017
conference, presented by Huang Go [28].
DenseNet calculates the output [™ layer by
applying the nonlinear transformation H;(.) to
the output [" layer (X,) before X;_; in a
general manner. Refer to Equationl.
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X =H(X;-1) (D

The variable X,_; represents the input from
previous layer, whereas H represents the result
of a series of computational operations
performed in layers, including Batch
Normalization (BN), Rectified Linear Unit
(ReLU), and convolution (Conv). The output
feature maps of layers are combined by
DenseNets rather than summarizing them with
the input [32]. DenseNet enhances the
transmission of information between layers by
establishing a streamlined communication
architecture. The [™ layer is influenced by the
input from all preceding layers, incorporating
their features. The equation is subsequently
converted into equation 2:

X = Hi[Xo, X1, X2, s X1-1] ()

The tensor [Xg, X1, X3, ..., X;_1] represents
the output map of the previous layer. After the
H; () function, there exists a nonlinear
transformation function. The function consists
of three main operations: bump normalization
(BN), activation using rectified linear units
(ReLU), and pooling and convolution
(CONV).

Preprocessing

The data is processed and examined for the
purpose of categorization. Calculate the
quantity of data needed for the data
preparation  phase,  specifically 3264
photographs from three categories:
meningioma, pituitary, and glioma.

Oversampling is a technique used to
combine many data types in order to achieve a
balanced collection of data. This practice is
commonly known as data preparation. After
achieving data balance, the CNN technique
will be utilized to process the data. CNN are a
specific form of deep learning methodology.
The CNN approach employs a multi-layered
processing technique to detect and extract data
characteristics.

DenseNet121 Architecture

The optimization of multiple
hyperparameters was evaluated to get the
optimal parameter combination and achieve
high accuracy in the development of the

DenseNetl21 model, as seen in Table 1.
Figure 4 displays the architecture of Modified
DenseNet121.

Figure 5(A) displays the Dense block.
Each dense block procedure consists of batch
normalization, ReLU activation, and
convolution with a 1 x 1 filter. This is
followed by another operation of ReLU
activation and convolution with a 3 x 3 filter,
where the matrix values are interconnected.
Otherwise, the matrix values should be
merged. The purpose of this procedure is to act
as a bottleneck, effectively reducing the
amount of parameters and computations in the
model. The value is multiplied by 24, and the
dense 4 block undergoes a convolution process
that is multiplied by 16.

The transition layer, depicted in Figure

5(B), is situated between the two compact
blocks. During the convolution and pooling
process, the feature size undergoes alterations.
The transition layer consists of convolution
operations using 2 x 2 filters and 1 x 1 average
pooling with strides of 2. The DenseNetl121
design consists of three transition layers,
specifically transition layer 1, transition layer
2, and transition layer 3.
Following that, consist of a Dropout layer and
a GlobalAveragePooling2D layer. The purpose
of this layer is to compute the mean value of
all the feature maps and combine them into a
single tensor1D. Next, incorporate the softmax
activation function as the final layer of the
DenseNet121 model. This layer computes
values that are in close proximity to 0, 1, and
2. A value of 0 is used to classify meningioma.
Option 1 is used to determine the type of
glioma, whereas option 2 is used to determine
the type of pituitary tumor.

Training and Testing

During the preparation stage, the input dataset
is obtained and resized to dimensions of
224X224. The dataset is partitioned into
training and testing data with a ratio of 80:20.
The goal of this assessment is to evaluate the
performance of the model that will be
developed during the pre-training phase. 80%
of the training process is focused on
leveraging data for training purposes.
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Fig 4. Modified DenseNet121 architecture
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Fig 5. Dense block architecture (A) and transition layer (B)
Table 1. Hyperparameter of Experimental Models

Hyperparameter Value
Batch size 32, 64,128
Learning rate 0,001
Optimizer ADAM, SGD
Activation function Softmax ReLU

Epoch 50, 100, 150, 200
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RESULT AND DISCUSSION

Result

Three distinct networks were chosen for
examination using Google Colab to execute
the application. The networks included in this
set are the Basic CNN, Basic DenseNet, and
Modified DenseNetl2l. A fundamental
Convolutional ~Neural Network (CNN)
typically consists of three convolutional layers
and two pooling layers. Multiple parameters
were modified to determine the potential
outcomes that can be achieved by this
architecture. An analysis is conducted on the
total number of experiments in the system,
which consists of 200 epochs, and the
corresponding  values. The results are
presented in table 2.

According to the table, the highest level of
accuracy achieved is 84,24%. In order to
evaluate limitations on the system, a network
is established to utilize test data. While the
model achieved a high success rate during
training, it was noted that it performed poorly
when testing. The testing results are displayed
in the confusion matrix depicted in Figure
6(A). The precision, recall, specificity, and F1
score can be computed using the confusion
matrix.

In order to conduct a comprehensive
evaluation of the model's performance, the
value of each tumor class was individually
assessed during the testing phase. The
meningioma tumor class is denoted as class 0,
the glioma tumor is denoted as class 1, and the
pituitary tumor is denoted as class 2. Table 5
displays the performance metrics of the simple
CNN model throughout the testing phase.

The structure of a classical DenseNet
consists of an initial convolution layer
followed by maxpooling layers, dense blocks,
transition layers, and dense layers. This
structure deviates from the fundamental
structure of the CNN model. The fundamental
densenet layer comprises 189 layers. The
objective of comparing the basic densenet with
the modified densenetl21 is to observe
significant alterations in network complexity
that surpass those of the suggested model.
Similar to the last test case, modifications
were made to the hyperparameters in order to
ascertain the highest level of accuracy
throughout the training phase.

According to the data in table 3, the
accuracy of the model has improved in
comparison to the prior model. The maximum
level of accuracy achieved is 92,29%. The
testing phase is conducted in order to generate
a confusion matrix show in Figure 6(B). Table
6 displays the test outcomes of the
fundamental densenet model.

The  Densenetl2l  modification s
implemented in the final experiment. The
architecture of this model is altered by
incorporating a dropout layer, a 2D global
average pooling layer, another dropout layer,
and a densenet layer at the conclusion of the
structure. This study entailed constructing a
DenseNet121 model and adjusting numerous
hyperparameters. The experiment yielded the
highest training accuracy of 98,24% when
employing the proposed model. This outcome
is the most elevated compared to previous
models. The ADAM optimizer, when used
with a learning rate of 0.001, consistently
attains the highest degree of accuracy. Table 4
presents a comparison of hyperparameters
throughout the training phase.

In the Densenet experiment, two dropout
layers were incorporated into the fully linked
layer to assess the impact on accuracy.
Implemented dropout regularization technique
to mitigate the problem of overfitting. The
hyperparameters have been defined as follows:
150 epochs, ADAM optimizer, and Softmax
activation. Various dropout values ranging
from 0.1 to 0.8 will be tested. The findings are
displayed in Figure 7. The optimal
performance within this range is achieved by
utilizing a dropout layer with a rate of 0.8,
resulting in an accuracy of 97.82%.

The testing phase is used to assess the
model's ability to accurately categorize photos.
The peak performance was attained at epoch
150 by utilizing the ADAM optimizer and
Softmax Activation Function. Figure 6(C)
displays the confusion matrix. According to
the confusion matrix, the suggested model
demonstrates excellent picture classification
capabilities. Table 7 displays the test
performance outcomes of the altered
densenet121 model.

Table 8 presents a comparative analysis of
the mean values for precision, specificity,
recall, fl score, and accuracy for all the
models that were tested. Figures 8 and 9
display the training and validation graphs for
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both the basic DenseNet model and the
suggested model. According to Figure 8, the
initial epoch of the basic densenet loss graph
shows a sudden increase followed by a drop in
the second epoch. When comparing the two
illustrations, it is evident that the modified
DenseNet121 model outperforms the basic
DenseNet model.

Discussion

This study employs the ADAM Optimizer
and Stochastic Gradient Descent (SGD) with a
learning rate of 0.001. Furthermore, the
utilization of a bigger epoch results in
increased runtime for each program. The
graphs depicted in Figures 8 and 9
demonstrate convergence at epoch 20. There is
no necessity to include an additional epoch.
The relationship between the time value and
the loss wvalue is inversely proportional.
Concurrently, the precision value rises in
direct correlation with the number of epochs.
The experiment is backed by the test results,
which demonstrated the maximum level of
accuracy, specifically 98.24%, while utilizing
the ADAM Optimizer function with
Activation softmax, epoch 150, and dropout
rate 0,8.

The DenseNetl121 design is chosen due to
its efficiency in terms of parameter usage and
computational  requirements, while yet
achieving state-of-the-art performance.
DenseNetl121 exhibits a steady improvement
in accuracy as the number of parameters
grows, without any indications of performance
deterioration or overfitting.

Table 9 presents a juxtaposition of the
intended research in this study with past
studies on brain tumor classification.

Pituitary
Pituitary

Actual
Glioma

Actual
Glioma

Meningioma
Meningioma

Glioma
Predicted
(A)

Meningioma Pituitary Meningioma

Glioma
Predicted
(B)

According to the comparative table, the
Modified DenseNet121 classification model is
highly effective in classifying brain cancers.
Implementing routing by agreement in
CapsNet necessitates a substantial number of
iterative procedures [33]. The suggested model
employs dense blocks, enabling the reuse of
initial features, hence accelerating
computation. This also aids in mitigating the
issue of vanishing gradients, hence facilitating
smoother gradient movement throughout the
network. In contrast to Alexnet [34], VGGI16
[35], and VGG19 [36], this model has a
reduced number of layers and lacks dense
layers, rendering it more prone to experiencing
disappearing gradients. The incorporation of
dropout and GlobalAveragePooling layers in
the model helps prevent overfitting.

Figure 10 displays an MRI image of the
brain that is recognized as distinct from the
original. This is produced by the presence of
features that are almost identical between
different classes. When various classes exhibit
highly similar characteristics, the model may
encounter challenges in  distinguishing
between them. The derived -characteristics
from the data may lack sufficient
discriminative power to differentiate between
distinct classes. When the characteristics of
two classes exhibit a high degree of similarity
or overlap, the model encounters challenges in
accurately delineating distinct boundaries
between the classes. Certain classes may have
highly comparable structures or patterns. For
instance, meningiomas and gliomas may
exhibit comparable morphological features in
MRI imaging, posing a challenge for models
to distinguish between them.

Glioma Pituitary

Actual

Meningioma

Glioma
Predicted
(®]

Pituitary Meningioma Pituitary

Fig 6. Result of Confusion Matrix Basic CNN (A), Basic DenseNet (B), and Modified DenseNet121
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Table 2. Values of Basic CNN Architecture Training Stage

.. Accuracy (%)
Optimizer Epoch Softmax ReLU
50 83,40 53,28
100 84,51 54,46
ADAM 150 84,24 55,37
200 86,24 55,37
50 79,54 46,48
100 80,26 47,37
SGD 150 80,64 48,96
200 80,64 48,96
Table 3. Values of Basic DenseNet Architecture Training Stage
A Accuracy (%)
Optimizer Epoch Softmax Rel.U
50 92,11 54,49
100 92,11 55,55
ADAM 150 92,29 56,27
200 92,29 56,34
50 86,49 48,56
100 87,68 48,89
SGD 150 88,20 49,34
200 88,20 49,34
Table 4. Values of Modified DenseNet121 Architecture Training Stage
A Accuracy (%)
Optimizer Epoch Softmax Rel.U
50 97,13 60,29
100 97,47 61,05
ADAM 150 98,28 60,65
200 92,24 60,14
50 9,88 49,53
100 92,53 49,75
SGD 150 92,74 50,28
200 92,74 60,29

Table 5. Performance of the Basic CNN Architecture on the Testing Stage by Class

Performance (%)

Basic CNN Precision Specivicity Recall F1 Score Accuracy
Meningioma (0) 72,89 91,51 68,81 70,79 86,71

Glioma (1) 86,9 89,4 91,36 89,07 90,25

Pituitary (2) 94,98 94,74 89,37 91,93 93,51

Table 6. Performance of the Basic DenseNet Architecture on the Testing Stage by Class

[
Basic DenseNet Performance (%)

Precision Specivicity Recall F1 Score Accuracy
Meningioma (0) 86,95 96,05 76,92 81,62 91,17
Glioma (1) 85,15 89,50 94,65 89,65 91,33
Pituitary (2) 97,80 97,99 93,89 95,80 92,22
Table 7. Performance of the Modified DenseNet121 Architecture on the Testing Stage by Class
Modified Performance (%)
DenseNet121 Precision Specivicity Recall F1 Score Accuracy
Meningioma (0) 95,67 98,65 95,45 95,55 97,89
Glioma (1) 98,01 98,28 98,72 98,36 98,48

Pituitary (2) 99,26 99,68 98,36 98,80 99,28
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Table 8. Comparison Table of All Models

Avg Performance (%)

Model Precision Specivicity Recall F1 Score Accuracy
Basic CNN 84,92 91,88 81,18 83,93 90,15
Basic DenseNet 89,97 94,51 88,48 89,02 91,57
Modified DenseNet 97,64 98,87 97,51 97,57 98,55
Table 9. Comparison of Accuracy Performance The Proposed Method and Previous Related
Model MRI Model Method Result
Afshar [29] T-1 CapsNet 90,89%
Kavin [30] T-1 AlexNet 92,60%
Sevli [31] T-1 VGGl6 94,42%
Swati [32] T-1 VGG19 94,82%
Proposed method T-1 Modified DenseNet121 98,24%
CONCLUSION training for 150 epochs. The DropOut rate that

Brain tumors are characterized by the
unregulated and aberrant proliferation of cells
in brain tissue, leading to the disruption of
normal brain function. Medical professionals
can utilize DenseNetl21 to assist in making
informed judgments regarding additional
treatment options. This design is utilized to
assess optimization, epoch, and activation. The
optimization algorithms employed are ADAM
and SGD. The experiment consisted of four
epochs: 50, 100, 150, and 200. The utilized
Activation Functions were Rectified Linear
Unit (ReLU) and Softmax. The DropOut rate
varies between 0,1 and 0,8. The model
achieved optimal results using the ADAM
optimizer, the softmax activation function, and
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