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Abstract 

 
Brain tumors are capable of developing in individuals of all ages and can originate 

from brain tissue in various shapes and sizes. As a result, it is critical to quickly identify 

patients in order to expedite treatment. Magnetic Resonance Imaging (MRI) of the brain 

is an appropriate technique for identifying chronic conditions, including tumors. Deep 

learning methodologies have suggested numerous medical analysis strategies for health 

monitoring and brain tumor identification. This study used a modified version of 

DenseNet121 to accurately categorize three different forms of brain tumors: 

meningioma, pituitary, and glioma. Following the last transition layer, the 

DenseNet121 modification adds DropOut and GlobalAveragePooling layers. We 

determine the optimal hyperparameters that yield the highest performance by 

comparing several factors, including dropout, epoch, optimizer, and activation 

function. Evaluation of classification performance involves a comparison between 

Basic CNN and Basic DenseNet. Results of the analysis show that the modified 

DenseNet121 model works best with the following ideal hyperparameters: ADAM 

optimizer, Softmax activation, 150 epochs of training, and an 0.8 dropout rate. The 

performance results show an accuracy value of 0.9782, exceeding previous research 

findings.          
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INTRODUCTION 

Brain tumors are distinguished by the 

uncontrolled and aberrant proliferation of cells 

in brain tissue, which results in the disruption 

of normal brain function [1]. Brain tumors can 

develop in people of every age and can 

originate in brain tissue, presenting a diverse 

array of shapes and sizes. Brain malignancies 

are divided into two categories according to 

their original site: primary tumors and 

secondary malignancies [2]. Primary tumors 

arise within the brain tissue, whereas secondary 

malignancies metastasize from other regions of 

the body and enter the brain tissue via the 

circulation [3]. Malignant brain tumors, 

including glioma and meningioma, can be fatal 

if not detected in their early phases [4]. The 

World Health Organization (WHO) classifies 

brain tumors into four distinct groups. The 

Global Cancer Observatory recorded around 

308,162 cases of brain tumors worldwide in 

2020. The data shows that Asia has the highest 

occurrence rate, namely at 54.2% [5]. 

Based on the information provided, it is 

crucial to promptly diagnose people who are 

contaminated. Brain tumors are believed to be 

more effectively detected by MRI [6]. Brain 

tumors are composed of soft tissue and can only 

be detected with the use of an MRI scan [7]. 

MRI scans are highly sensitive and provide 

detailed picture information, enabling them to 

differentiate between soft and hard tissue in the 

brain [8] [9]. 
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In the process of diagnosing brain tumors, 

clinicians frequently employ biopsies and 

physical observations as diagnostic procedures 

[10]. Although the manual method is error-

prone, the biopsy procedure (including 

laboratory testing) takes around 10-15 days 

[11]. Alternative approaches with a reduced 

error rate and decreased processing time are 

necessary to aid physicians in their decision-

making. Computer-aided Diagnosis (CAD) 

enhances the precision of patient diagnosis, 

leading to improved early detection and 

ultimately enhancing the patient's quality of 

life [12] [13]. 

Using a technique for categorizing brain 

malignancies on MRI images, CAD-assisted 

brain tumor diagnosis is presently being 

implemented. Machine Learning (ML) is an 

often employed technique. In 2017, Vani et al. 

employed the Support Vector Machine (SVM) 

method to categorize brain cancers into two 

categories: tumors present and tumors absent, 

achieving a 80% accuracy [14]. The 

researchers in Zaw's study investigated the 

efficacy of decision tree and naïve Bayes 

algorithms in the classification of brain 

tumors. The classification findings 

demonstrate that decision trees provide 

superior performance compared to naïve 

Bayes, with an accuracy of 94% [15]. Despite 

the remarkable efficacy of machine learning 

methods, including classification, in numerous 

applications, several drawbacks must be taken 

into account, one of which is the labor-

intensive process of feature extraction that 

must be performed manually [16]. In order to 

create the most effective features, it is 

necessary to do research on different 

combinations of features. 

A Convolutional Neural Network (CNN) is 

a Deep Learning technique employed for the 

examination and categorization of digital 

picture data [17] [18]. CNN possesses the 

benefit of automated feature extraction, as 

opposed to machine learning which still 

requires operator intervention [19]. CNN 

achieves the highest level of accuracy in 

classifying images [20] [21]. Sarkar did a 

study utilizing CNN to classify three distinct 

forms of brain tumors, achieving a high 

accuracy rate of 91% [22]. In 2014, a novel 

CNN method was developed to categorize 

three types of tumors, with a precision rate of 

96.56% [23]. 

Prior studies have shown that the CNN 

architecture is effective in classifying images. 

Nevertheless, the CNN architecture faces 

numerous obstacles. An issue frequently 

encountered in the training of deep networks is 

the loss of gradient during the process of 

backtracking [24]. The training process is 

impeded by the fact that gradients in CNNs 

can become exceedingly small when 

approaching the initial layers [25]. CNNs 

suffer from the issue that the features acquired 

by the initial layers are not effectively 

exploited by the subsequent layers [26]. CNNs 

often possess a large number of parameters 

due to the interconnectedness between each 

layer and all the layers that follow it [27]. 

Using parameters in this way can be 

inefficient, particularly in deep models that 

include numerous layers. Consequently, the 

implemented model was adjusted to address 

this issue. In their 2017 study, Huang et al. 

[28] demonstrated that LeNet CNN fail to 

fully use the characteristics of preceding 

neural network layers. Huang et al. introduces 

a novel DenseNet (Dense Convolutional 

Network) that effectively utilizes training 

features. 

DenseNet employs direct connections 

between every pair of layers, enabling 

gradients to propagate straight to preceding 

layers with minimal attenuation, hence 

mitigating the issue of vanishing gradients 

[29]. In DenseNet, the direct connections 

between each layer and all the layers above it 

allow for the direct utilization of information 

learned by early levels by deeper layers [30]. 

DenseNet achieves parameter efficiency by 

recycling features from each layer through 

direct connections, resulting in a reduction in 

the number of parameters [31]. 

The study employed DenseNet121 to 

categorize three distinct categories of brain 

tumors: meningioma, glioma, and pituitary. In 

this study, we enhance the DenseNet121 

design by incorporating Dropout and 

GlobalAveragePooling layers following the 

last transition layer. The purpose of 

incorporating this layer is to enhance the 

representation of features and mitigate the 

issue of overfitting. Various hyperparameters, 

such as epoch, optimizer, and activation 

function, are compared to determine the ideal 

hyperparameters that result in the maximum 

level of precision. We will assess the 
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performance by comparing it with several 

architectures, including Basic CNN and Basic 

DenseNet.   

MATERIAL AND METHODS 

The research methodology initiates with 

acquiring a brain MRI image dataset, which is 

subsequently subjected to data processing via 

resizing the images to dimensions of 240x240. 

The data that has been processed is divided 

into two separate datasets: one for training and 

one for testing. The ratio of the training dataset 

to the testing dataset is 80:20. Performance, 

accuracy, precision, recall, and specificity 

were subsequently computed for the confusion 

matrix by the DenseNet121 model. Data 

testing represents the ultimate phase. Refer to 

Figure 1 for additional information. 

 
 

Fig 1. Proposed method 

 

 

Brain Tumor Dataset 
The dataset utilized in this study was 

collected from the Chandrabhaga Clinic and 

Nursing Home in 2019. It consisted of 3264 

MRI images specifically focused on the brain. 

The dataset employed in this study was 

annotated for each class by professionals. The 

classifications or classes are categorized into 

three groups: meningioma, pituitary, and 

glioma. 

 MRI scans display cross-sectional images in 

the axial, sagittal, and coronal planes, which 

are subsequently combined into a single image 

for each category. The total number of images 

for Meningioma Tumors was 937, for Pituitary 

Tumors it was 901, and for Glioma Tumors it 

was 926. Figure 2 displays an example dataset. 

 

Fig 2. Sample data of brain tumor dataset 

DenseNet 

Fig 3. DenseNet architecture [30] 

DenseNet is a cutting-edge CNN structure 

specifically developed for the purpose of 

detecting visual object. It stands out for its 

ability to achieve high performance with a 

reduced number of parameters. The 

introduction of Densenet was place at the 2017 

conference, presented by Huang Go [28]. 

DenseNet calculates the output 𝑙th layer by 

applying the nonlinear transformation 𝐻𝑙(.) to 

the output 𝑙th layer (𝑋𝑙) before 𝑋𝑙−1 in a 

general manner. Refer to Equation1. 
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𝑋𝑙 = 𝐻𝑙(𝑋𝑙−1)   (1) 

The variable 𝑋𝑙−1 represents the input from 

previous layer, whereas H represents the result 

of a series of computational operations 

performed in layers, including Batch 

Normalization (BN), Rectified Linear Unit 

(ReLU), and convolution (Conv). The output 

feature maps of layers are combined by 

DenseNets rather than summarizing them with 

the input [32]. DenseNet enhances the 

transmission of information between layers by 

establishing a streamlined communication 

architecture. The 𝑙th layer is influenced by the 

input from all preceding layers, incorporating 

their features. The equation is subsequently 

converted into equation 2:  

𝑋𝑙 = 𝐻𝑙[𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑙−1]          (2) 

The tensor [𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑙−1] represents 

the output map of the previous layer. After the 

𝐻𝑙 (.)  function, there exists a nonlinear 

transformation function. The function consists 

of three main operations: bump normalization 

(BN), activation using rectified linear units 

(ReLU), and pooling and convolution 

(CONV). 

Preprocessing  

The data is processed and examined for the 

purpose of categorization. Calculate the 

quantity of data needed for the data 

preparation phase, specifically 3264 

photographs from three categories: 

meningioma, pituitary, and glioma.  

Oversampling is a technique used to 

combine many data types in order to achieve a 

balanced collection of data. This practice is 

commonly known as data preparation. After 

achieving data balance, the CNN technique 

will be utilized to process the data. CNN are a 

specific form of deep learning methodology. 

The CNN approach employs a multi-layered 

processing technique to detect and extract data 

characteristics. 

DenseNet121 Architecture 

 The optimization of multiple 

hyperparameters was evaluated to get the 

optimal parameter combination and achieve 

high accuracy in the development of the 

DenseNet121 model, as seen in Table 1. 

Figure 4 displays the architecture of Modified 

DenseNet121.  

 Figure 5(A) displays the Dense block. 

Each dense block procedure consists of batch 

normalization, ReLU activation, and 

convolution with a 1 x 1 filter. This is 

followed by another operation of ReLU 

activation and convolution with a 3 x 3 filter, 

where the matrix values are interconnected. 

Otherwise, the matrix values should be 

merged. The purpose of this procedure is to act 

as a bottleneck, effectively reducing the 

amount of parameters and computations in the 

model. The value is multiplied by 24, and the 

dense 4 block undergoes a convolution process 

that is multiplied by 16.  

 The transition layer, depicted in Figure 

5(B), is situated between the two compact 

blocks. During the convolution and pooling 

process, the feature size undergoes alterations. 

The transition layer consists of convolution 

operations using 2 x 2 filters and 1 x 1 average 

pooling with strides of 2. The DenseNet121 

design consists of three transition layers, 

specifically transition layer 1, transition layer 

2, and transition layer 3. 

Following that, consist of a Dropout layer and 

a GlobalAveragePooling2D layer. The purpose 

of this layer is to compute the mean value of 

all the feature maps and combine them into a 

single tensor1D. Next, incorporate the softmax 

activation function as the final layer of the 

DenseNet121 model. This layer computes 

values that are in close proximity to 0, 1, and 

2. A value of 0 is used to classify meningioma. 

Option 1 is used to determine the type of 

glioma, whereas option 2 is used to determine 

the type of pituitary tumor. 

Training and Testing 

 During the preparation stage, the input dataset 

is obtained and resized to dimensions of 

224X224. The dataset is partitioned into 

training and testing data with a ratio of 80:20. 

The goal of this assessment is to evaluate the 

performance of the model that will be 

developed during the pre-training phase. 80% 

of the training process is focused on 

leveraging data for training purposes.
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Fig 4. Modified DenseNet121 architecture 

 

Fig 5. Dense block architecture (A) and transition layer (B) 

Table 1. Hyperparameter of Experimental Models 

Hyperparameter Value 

Batch size 

Learning rate 

Optimizer 

Activation function 

Epoch 

32, 64, 128 

0,001 

ADAM, SGD 

Softmax ReLU 

50, 100, 150, 200 
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RESULT AND DISCUSSION 

Result 

Three distinct networks were chosen for 

examination using Google Colab to execute 

the application. The networks included in this 

set are the Basic CNN, Basic DenseNet, and 

Modified DenseNet121. A fundamental 

Convolutional Neural Network (CNN) 

typically consists of three convolutional layers 

and two pooling layers. Multiple parameters 

were modified to determine the potential 

outcomes that can be achieved by this 

architecture. An analysis is conducted on the 

total number of experiments in the system, 

which consists of 200 epochs, and the 

corresponding values. The results are 

presented in table 2. 

According to the table, the highest level of 

accuracy achieved is 84,24%. In order to 

evaluate limitations on the system, a network 

is established to utilize test data. While the 

model achieved a high success rate during 

training, it was noted that it performed poorly 

when testing. The testing results are displayed 

in the confusion matrix depicted in Figure 

6(A). The precision, recall, specificity, and F1 

score can be computed using the confusion 

matrix. 

In order to conduct a comprehensive 

evaluation of the model's performance, the 

value of each tumor class was individually 

assessed during the testing phase. The 

meningioma tumor class is denoted as class 0, 

the glioma tumor is denoted as class 1, and the 

pituitary tumor is denoted as class 2. Table 5 

displays the performance metrics of the simple 

CNN model throughout the testing phase. 

The structure of a classical DenseNet 

consists of an initial convolution layer 

followed by maxpooling layers, dense blocks, 

transition layers, and dense layers. This 

structure deviates from the fundamental 

structure of the CNN model. The fundamental 

densenet layer comprises 189 layers. The 

objective of comparing the basic densenet with 

the modified densenet121 is to observe 

significant alterations in network complexity 

that surpass those of the suggested model. 

Similar to the last test case, modifications  

were made to the hyperparameters in order to 

ascertain the highest level of accuracy 

throughout the training phase.  

According to the data in table 3, the 

accuracy of the model has improved in 

comparison to the prior model. The maximum 

level of accuracy achieved is 92,29%. The 

testing phase is conducted in order to generate 

a confusion matrix show in Figure 6(B). Table 

6 displays the test outcomes of the 

fundamental densenet model. 

The Densenet121 modification is 

implemented in the final experiment. The 

architecture of this model is altered by 

incorporating a dropout layer, a 2D global 

average pooling layer, another dropout layer, 

and a densenet layer at the conclusion of the 

structure. This study entailed constructing a 

DenseNet121 model and adjusting numerous 

hyperparameters. The experiment yielded the 

highest training accuracy of 98,24% when 

employing the proposed model. This outcome 

is the most elevated compared to previous 

models. The ADAM optimizer, when used 

with a learning rate of 0.001, consistently 

attains the highest degree of accuracy. Table 4 

presents a comparison of hyperparameters 

throughout the training phase.  

In the Densenet experiment, two dropout 

layers were incorporated into the fully linked 

layer to assess the impact on accuracy. 

Implemented dropout regularization technique 

to mitigate the problem of overfitting. The 

hyperparameters have been defined as follows: 

150 epochs, ADAM optimizer, and Softmax 

activation. Various dropout values ranging 

from 0.1 to 0.8 will be tested. The findings are 

displayed in Figure 7. The optimal 

performance within this range is achieved by 

utilizing a dropout layer with a rate of 0.8, 

resulting in an accuracy of 97.82%. 

The testing phase is used to assess the 

model's ability to accurately categorize photos.  

The peak performance was attained at epoch 

150 by utilizing the ADAM optimizer and 

Softmax Activation Function. Figure 6(C) 

displays the confusion matrix. According to 

the confusion matrix, the suggested model 

demonstrates excellent picture classification 

capabilities. Table 7 displays the test 

performance outcomes of the altered 

densenet121 model.  

Table 8 presents a comparative analysis of 

the mean values for precision, specificity, 

recall, f1 score, and accuracy for all the 

models that were tested. Figures 8 and 9 

display the training and validation graphs for 
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both the basic DenseNet model and the 

suggested model. According to Figure 8, the 

initial epoch of the basic densenet loss graph 

shows a sudden increase followed by a drop in 

the second epoch. When comparing the two 

illustrations, it is evident that the modified 

DenseNet121 model outperforms the basic 

DenseNet model.  

Discussion  
This study employs the ADAM Optimizer 

and Stochastic Gradient Descent (SGD) with a 

learning rate of 0.001. Furthermore, the 

utilization of a bigger epoch results in 

increased runtime for each program. The 

graphs depicted in Figures 8 and 9 

demonstrate convergence at epoch 20. There is 

no necessity to include an additional epoch. 

The relationship between the time value and 

the loss value is inversely proportional. 

Concurrently, the precision value rises in 

direct correlation with the number of epochs. 

The experiment is backed by the test results, 

which demonstrated the maximum level of 

accuracy, specifically 98.24%, while utilizing 

the ADAM Optimizer function with 

Activation softmax, epoch 150, and dropout 

rate 0,8.  

The DenseNet121 design is chosen due to 

its efficiency in terms of parameter usage and 

computational requirements, while yet 

achieving state-of-the-art performance. 

DenseNet121 exhibits a steady improvement 

in accuracy as the number of parameters 

grows, without any indications of performance 

deterioration or overfitting. 

Table 9 presents a juxtaposition of the 

intended research in this study with past 

studies on brain tumor classification. 

According to the comparative table, the 

Modified DenseNet121 classification model is 

highly effective in classifying brain cancers. 

Implementing routing by agreement in 

CapsNet necessitates a substantial number of 

iterative procedures [33]. The suggested model 

employs dense blocks, enabling the reuse of 

initial features, hence accelerating 

computation. This also aids in mitigating the 

issue of vanishing gradients, hence facilitating 

smoother gradient movement throughout the 

network. In contrast to Alexnet [34], VGG16 

[35], and VGG19 [36], this model has a 

reduced number of layers and lacks dense 

layers, rendering it more prone to experiencing 

disappearing gradients. The incorporation of 

dropout and GlobalAveragePooling layers in 

the model helps prevent overfitting. 

Figure 10 displays an MRI image of the 

brain that is recognized as distinct from the 

original. This is produced by the presence of 

features that are almost identical between 

different classes. When various classes exhibit 

highly similar characteristics, the model may 

encounter challenges in distinguishing 

between them. The derived characteristics 

from the data may lack sufficient 

discriminative power to differentiate between 

distinct classes. When the characteristics of 

two classes exhibit a high degree of similarity 

or overlap, the model encounters challenges in 

accurately delineating distinct boundaries 

between the classes. Certain classes may have 

highly comparable structures or patterns. For 

instance, meningiomas and gliomas may 

exhibit comparable morphological features in 

MRI imaging, posing a challenge for models 

to distinguish between them. 

 

 

Fig 6. Result of Confusion Matrix Basic CNN (A), Basic DenseNet (B), and Modified DenseNet121 

(C) 
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Fig 7. Graph of accuracy results with various levels of dropout rate 

 

Fig 8. Basic DenseNet model training validation loss and accuracy 

 

Fig 9.  Modified DenseNet121 model training validation loss and accuracy 

Fig 10. Examples of misidentified images  
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Table 2. Values of Basic CNN Architecture Training Stage 

Optimizer Epoch 
Accuracy (%) 

Softmax ReLU 

ADAM 

50 83,40 53,28 

100 84,51 54,46 

150 84,24 55,37 

200 86,24 55,37 

SGD 

50 79,54 46,48 

100 80,26 47,37 

150 80,64 48,96 

200 80,64 48,96 

Table 3. Values of Basic DenseNet Architecture Training Stage 

Optimizer Epoch 
Accuracy (%) 

Softmax ReLU 

ADAM 

50 92,11 54,49 

100 92,11 55,55 

150 92,29 56,27 

200 92,29 56,34 

SGD 

50 86,49 48,56 

100 87,68 48,89 

150 88,20 49,34 

200 88,20 49,34 

Table 4. Values of Modified DenseNet121 Architecture Training Stage 

Optimizer Epoch 
Accuracy (%) 

Softmax ReLU 

ADAM 

50 97,13 60,29 

100 97,47 61,05 

150 98,28 60,65 

200 92,24 60,14 

SGD 

50 9,88 49,53 

100 92,53 49,75 

150 92,74 50,28 

200 92,74 60,29 

Table 5. Performance of the Basic CNN Architecture on the Testing Stage by Class 

Basic CNN 
Performance (%) 

Precision Specivicity Recall F1 Score Accuracy 

Meningioma (0) 72,89 91,51 68,81 70,79 86,71 

Glioma (1) 86,9 89,4 91,36 89,07 90,25 

Pituitary (2) 94,98 94,74 89,37 91,93 93,51 

Table 6. Performance of the Basic DenseNet Architecture on the Testing Stage by Class 

Basic DenseNet 
Performance (%) 

Precision Specivicity Recall F1 Score Accuracy 

Meningioma (0) 86,95 96,05 76,92 81,62 91,17 

Glioma (1) 85,15 89,50 94,65 89,65 91,33 

Pituitary (2) 97,80 97,99 93,89 95,80 92,22 

Table 7. Performance of the Modified DenseNet121 Architecture on the Testing Stage by Class 
Modified 

DenseNet121 

Performance (%) 

Precision Specivicity Recall F1 Score Accuracy 

Meningioma (0) 95,67 98,65 95,45 95,55 97,89 

Glioma (1) 98,01 98,28 98,72 98,36 98,48 

Pituitary (2) 99,26 99,68 98,36 98,80 99,28 
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Table 8. Comparison Table of All Models 

Model 
Avg Performance (%) 

Precision Specivicity Recall F1 Score Accuracy 

Basic CNN 84,92 91,88 81,18 83,93 90,15 

Basic DenseNet 89,97 94,51 88,48 89,02 91,57 

Modified DenseNet 

121 
97,64 98,87 97,51 97,57 98,55 

Table 9. Comparison of Accuracy Performance The Proposed Method and Previous Related 
Model MRI Model Method Result 

Afshar [29] T-1 CapsNet 90,89% 

Kavin [30] T-1 AlexNet 92,60% 

Sevli [31] T-1 VGG16 94,42% 

Swati [32] T-1 VGG19 94,82% 

Proposed method T-1 Modified DenseNet121 98,24% 

 

CONCLUSION  

Brain tumors are characterized by the 

unregulated and aberrant proliferation of cells 

in brain tissue, leading to the disruption of 

normal brain function. Medical professionals 

can utilize DenseNet121 to assist in making 

informed judgments regarding additional 

treatment options. This design is utilized to 

assess optimization, epoch, and activation. The 

optimization algorithms employed are ADAM 

and SGD. The experiment consisted of four 

epochs: 50, 100, 150, and 200. The utilized 

Activation Functions were Rectified Linear 

Unit (ReLU) and Softmax. The DropOut rate 

varies between 0,1 and 0,8. The model 

achieved optimal results using the ADAM 

optimizer, the softmax activation function, and 

training for 150 epochs. The DropOut rate that 

yields the highest performance 0,8.  

To advance research, it is crucial to classify 

healthy brains and enhance the precision of 

models by employing alternative architectures 

that may effectively utilize superior feature 

extraction techniques. In addition, it can also 

leverage architectures that offer accurate class 

label prediction performance, such as Support 

Vector Machines (SVM) and Extreme 

Gradient Boosting (XGBoost). 
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