

Vol. 7, No. 4, Desember 2014 ISSN 0216 – 0544

189

DESIGN AND DEVELOPMENT OF COMPONENT LIBRARY GENETIC

ALGORITHM BY USING OBJECT-ORIENTED DESIGN AND PROGRAMMING

aHadi Suyono, bAdharul Muttaqin, and cEka Prakarsa Mandyartha

a,b,cDepartment of Electrical Engineering, Faculty of Engineering, University of Brawijaya

E-Mail: hadis@ub.ac.id

Abstrak

Makalah ini menyajikan desain dan pembuatan komponen library Algoritma Genetik

dengan menggunakan pendekatan object-oriented designand programming (OODP) dan

Component-based Develepment (CBD). KomponenAlgoritma Genetika (AG) merupakan

komponen software enginedibuat sendiri yang digunakan untuk membantu

menyelesaikan persoalan optimisasi dengan menggunakan struktur Algoritma Genetika

yang disebut dengan Library Algoritma Genetika (LibAGen). Metodologi OODP dan

CBD meliputi analisis kebutuhan, diagram use-case, diagram kelas dan diagram

sekuensial. Library Algoritma Genetika (LibAGen) ini terdiri dari 22 kelas yang

dikelompokkan dalam namespace berdasarkan struktur desain AG yang diperlukan

meliputi representasi populasi, fungsi evaluasi, operator genetika (crossover dan mutasi)

dan seleksi. Untuk mengukur performansi dari engine LibAGen validasi telah dilakukan

dengan menggunakan persamaan fungsi sinusoidal dua parameter. Waktu eksekusi dan

nilai optimum parameter dengan beberapa pengujian dengan variasi jumlah generasi

(iterasi) juga dilakukan pada makalah ini. Parameter AG yang digunakan adalah

probabilitas crossover 25% dan probabilitas mutasi 1%. Hasil uji validasi menunjukkan

bahwa nilai fitness terbaik adalah 388,501 dengan nilai parameter x1 = 11,6256 dan x2 =

5,7249. Terdapat perbedaan tidak signifikan antara nilai fitness terbaik dibandingkan

dengan hasil Michalewicz (1999) yaitu sebesar 0,08%.

Kata kunci:Algoritma Genetika, component library, object-oriented design and

programming (OODP)

Abstract

This paper presents the design and development of Genetic Algorithm (GA) library

components by using object-oriented design and programming (OODP) and Component-

based development(CBD). Genetic Algorithm component is an engine software

component which is developed by own development for solving the optimization problem

by using a structure of Genetic Algorithm (GA) called as Genetic Algorithm Library

(LibAGen). OODP and CBD methodologies include requirement analysis, use-case

diagrams, and class diagrams. Genetic Algorithm Library (LibAGen) consists of 22

classes which is grouped into namespaces based on GA design structure that include

population representation, evaluation function, genetic operators (crossover and mutation)

and selection. To measure the performance of the LibAGen engine, a validation has been

carried outby using a sinusoidal function with two-parameters. Optimal parameter with

some testing through variations of the number generations (iterations) have been

performed in this paper. The GA parameters selected are crossover probability of 25%

and mutation probability of 5%. Validation test results indicate that the best fitness and

parameters are 388,501, x1 = 11,6256 and x2 = 5,7249. There is no significant result in

term of the best fitness compared with Michalewicz (1999) i.e. 0.08%

Key words:Genetic Algorithm, component library, object-oriented design and

programming (OODP)

mailto:hadis@ub.ac.id

190 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

INTRODUCTION

In solving the optimization problem, there are

two widely used approaches, namely the

deterministic methods and non deterministic

approaches [1]. The deterministic method is an

optimization solution by using mathematical

and numerical approaches, whereas the non-

deterministic method is by using a heuristic

probability approach and artificial intelligent

(AI). The heuristic probability approach and

the AI, Genetic Algorithm (GA) are widely

applied for solving The optimization as in the

data mining process[2,3], the power system

problem [4,5], control systems[6] and other

applications.

Genetic Algorithms (GA) is a computational

approach to solve an optimization problem by

modeling the problem in a process as if

biological evolution [7]. In general, the stages

in the GA is starting with establishment of a

set of candidates for a potential solution that

satisfies all constraints required in the

initialization process.

The set of potential solutions is defined at the

beginning called as chromosomes.

Chromosomes are formed randomly and can

be as an array numbers in binary or decimal

form that is generated and then selected

according to the required constraints. The

entire set of chromosomes represents a

population. Furthermore, these chromosomes

will be evolved in several iterations, called

generations. The new generation (offspring)

generated through the process of crossover and

mutation. Offspring chromosomes is evolved

by a suitability fitness that will be selected as

the best results while others are discounted

[7,8].

To simplify the analysis and implementation

of GA in solving the optimization problem,

software with several approaches is needed.

The software should be designed and

developed thus the application could be

updated and maintenance easily. In general,

the design and development methodologies are

widely applied software is modular or

procedural approach in which a problem is

divided in the form of the

function/procedure/subroutine that represents

sub-problem required in the whole problem

[9].Another design and implementation

approach is design and object-oriented

programming (OODP) and component-based

development (CBD) [10,11]. CBD and

reusability techniques are a new approach that

have many benefits including reducing the

time, resources, costs, and increase

productivity in software development [11,12].

CBD can be developed via two programming

approaches, structural-based design or object-

oriented design (OOD). However, the OOD

approach is widely applied in the development

of software applications where a complex

system can be maintained more easily. The

design is based on the object-oriented

approach allows complex problems to be

divided into small parts. OODP and CBD

implementation can be found in several

references [13,14].

Genetic algorithm library is a component

software that provides a problem solution by

using genetic algorithm structure such as

chromosome representation, evaluation

function, and genetic operators such as

crossover, mutation, and selection.

STRUCTURE AND LIBRARY

DESIGN

Library Structure

The Genetic Algorithm (GA) library

structure is given in Figure 1. Library structure

consists of three main layers. The first layer

consists of units that are not directly related to

the GA, but the implementation of these units

is important. GA library implements number

random generator to provide the randomly

number with different data types such as

integer, float, and Boolean. The summary

result of chromosome and population

operation is provided by statistic observer.

Such features provide common functions used

by other units which are at the higher layers in

the library.

Chromosome

Random number
generator,

Statistic Observer

Population

Algoritma

M
u

tatio
n, Crossover, Fitness Fun

ction
,

Ch
ro

m
o

som
e R

epresen
tatio

n

Selection

Simple Genetic
Algorithm

Figure 1.Genetic Algorithm Structure Library

Hadi Suyono, Adharul Muttaqin, Eka Prakarsa Mandyartha, Design and…191

The middle layer consists of three units i.e.

Chromosome, Population, and Algorithm. The

main features of the library are implemented in

this layer. The chromosomes unit represents

the generating of chromosomes and population

that define the behavior in the system. The

Algorithm provides the chromosome process.

The highest layer includes units that deal

with the genetic operations such as crossover,

mutation, and fitness operation. The

population unit is a unit that controls a set of

chromosomes (population). The selection

operations such as roulette wheel and rank

ordering of the fitness are included. The last

unit is the Simple GA unit that implements the

problem solutions process by using the GA

structure.

Use-Case Diagram

Use case model system describes the

interaction between the actors who acquired

the library with the library feature and

environment. The components required to

build the library are represented as use-cases.

In the LibAgen library design, there are seven

components required i.e. selection of

chromosome representation, definition of

fitness function, crossover method selection,

mutation method selection, performing the

algorithm, and acquired the solution statistic.

The specific actor in this design is the library’s

user. The interaction actor and use-cases is

given in Figure 2.

Figure 2. Diagram use-case library

Selection of chromosomes representation

use-case is to select or define the appropriate

chromosome representation such as binary

encoding, float or real value, or permutation

approaches. Fitness function use-case defines

the fitness function, in which the fitness

function allows the user library to provide any

specific function and later the fitness value

will be provided. Crossover and mutation use-

cases are used to select the crossover and

mutation methods provided by the library or

the user can define by their own method.

Selection method and perform the

algorithm use-cases are used to define the

algorithm selection methods that not provided

by the library and to solve the problems that

have been defined previously. Population

statistics use-case is conducted to obtain data

on the best chromosome, the average fitness,

and maximum or minimum fitness values.

Library Design

Units contained in the GA library structure

consists of group classes and interfaces.

Grouping of some classes and interfaces in a

single component called a package - further in

this paper is called the namespace. Table 1

presents a list compiled library namespace of

genetic algorithm with their description.

Fig. 3. Namespace relation

Actor

Selection of Chomosome
Representation

Fitness Function
Definition

Crossover Method
Selection

Mutation Method
Selection

Selection Method

Performing of Algorithm

Statistical Solution

Chromosome

Population

Algorithm

General

Representation

CrossoverOperation

MutationOperation

SelektionOperation

StatisticObserver

192 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

Table 1. List of namespace and description

Namespace Description

Algorithm Consist of classes required to

implement the genetic algorithm

structure

Chromosome Consist of interfaces and classes

needed to implement the

behavior and representation of

chromosomes and genetic

operations

Chromosome.

CrossoverOper

ation

Consist of the implementation of

crossover operation

Chromosome.

MutationOpera

tion

Consist of the implementation of

mutation operation

Chromosome.

Representation

Consist of the implementation of

chromosome representation

General Contains common classes used

by the library

Population Consist of the classes used to

create a Population of

chromosome and genetic

operation

Population.Sel

ectioOperation

Consist of the implementation of

the operation selection

StatisticObserv

er

Consist of the classes used for

providing the Population statistic

information

Genetic algorithm library architecture

design is described as a relation between

namespace to represent the overall system

modeling. Each namespace consists of the

class members. The relationships among

namespace can be seen in Figure 3. The

relationships are depicted with dashed arrows

indicate that the namespace end used by the

connecting arrows (aggregation), for example,

the General namespace used by namespace

Chromosome, Population, algorithms, and also

by other namespaces.

+makeCopy()

+build()

+makeNew()

+hitungFitness()

+performCrossover()

+performMutasi()

+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()

+getParameters()

+getConfig()

+getSizeKode()

«interface»

IKromosom<T>

Figure 4. Class Diagram of IKromosom

Interface

CLASSES DESIGN

Chromosome

Chromosome is the main object in the GA

structure library, which is defined by

IKromosomclass. IKromosom class is the

actual implementation of the interface for

devoping the chromosome. IKromosom class

is shown in Fig. 4, in which there are many

functions associated to the operation of the

establishment and operation of chromosomes,

such as makeNew() function to create a new

chromosome, hitungFitness() function is

the process of calculating fitness value of each

chromosome.

+AGBlokKonfigurasiKromosom()

+AGBlokKonfigurasiKromosom()

+getDomain()

+getFungsiFitness()

+getOperasiCrossover()

+getOperasiMutasi()

+getParameter()

AGBlokKonfigurasiKromosom<T>

#parameter : AGParameterKromosom

#mutasi : IOperasiMutasi<T>

#crossover : IOperasiCrossover<T>

#fungsiFitness : IOperasiFitness<T>

#domain : ISetNilai<T>[]

Figure 5. Class Diagram of
AGBlokKonfigKrom

Chromosome configuration data includes

parameters of chromosomes, mutation and

crossover methods, fitness function to be used,

and chromosome representation. The

chromosome configuration is defined in the

AGBlokKonfigKrom class as given in Figure.

5.

Crossover and mutation operations, and

also the fitness function is defined by the

interface of each class such as

IOperasiCrossover, IOperasiMutasi, and

IoperasiFitness respectively. IOperasiFitness is

an interface for the fitness function that can be

defined by users. Those interface and classes

are clustered into the Chromosome

namespace.

Hadi Suyono, Adharul Muttaqin, Eka Prakarsa Mandyartha, Design and…193

Figure 6. Class Diagram of AGPopulasi

Population

Population object contains of chromosome

and population configuration objects that is

given in Figure 6. Configuration population

includes the population parameter such as the

population size and the proposed selection

method. AGPopulasiis assembled into

Population namespace.

Representation ofChromosome

AGKromosomRealValue class can be

used for the representation of the chromosome

that represents a solution to the real number

coding, where the details of the definition of

the class diagram shown in Figure 7.

AGKromosomRealValue class is a subclass

of class IKromosom.

+makeCopy()

+build()

+makeNew()

+hitungFitness()

+performCrossover()

+performMutasi()

+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()

+getParameter()

+getConfig()

+getSizeKode()

«interface»

IKromosom<T>

+AGKromosomRealValue()

#AGKromosomRealValue()

+makeCopy()

+build()

+makeNew()

+hitungFitness()

+performCrossover()

+performMutasi()

+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()

+getParameters()

+getConfig()

+getSizeKode()

+ToString()

AGKromosomRealValue<T>

#blokKonfig : AGBlokKonfigurasiKromosom<T>

#values : T[]

#size : int

#fitness : double

Figure 7. Class Diagram of

AGKromosomRealValue

Genetic operations, namely crossover and

mutation, can be defined and implemented in

separate classes. Furthermore, object classes

are defined in AGBlokKonfigKrom as

given in Figure 8.

+evalFitness()

«interface»

IOperasiFitness<T>

+operateMutasi()

«interface»

IOperasiMutasi<T>

+operateCrossover()

«interface»

IOperasiCrossover<T>

+AGBlokKonfigurasiKromosom()

+AGBlokKonfigurasiKromosom()

+getDomain()

+getFungsiFitness()

+getOperasiCrossover()

+getOperasiMutasi()

+getParameter()

AGBlokKonfigurasiKromosom<T>

#parameter : AGParameterKromosom

#mutasi : IOperasiMutasi<T>

#crossover : IOperasiCrossover<T>

#fungsiFitness : IOperasiFitness<T>

#domain : ISetNilai<T>

+AGKromosomRealValue()

#AGKromosomRealValue()

+makeCopy()

+build()

+makeNew()

+hitungFitness()

+performCrossover()

+performMutasi()

+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()

+getParameters()

+getConfig()

+getSizeKode()

+ToString()

AGKromosomRealValue<T>

#blokKonfig : AGBlokKonfigurasiKromosom<T>

#values : T[]

#size : int

#fitness : double

Figure 8. Relationship of class diagram

between

AGKromosomRealValueclass

and GA operation interfaces

In most optimization problem by using the

GA solution, the variables which are

represented as chromosome have restrictions

called as constraints. These constraints on the

library object is realized through ISetNilai

class interface. ISetNilaiclass interface

from the object set with the value of the class

definition is given in Figure 9. The relation of

the three classes AGKromRealValue,

AGBlokKonfKro and ISetNilaiinterface

are given in Figure 10.

+generateRandom()

«interface»

ISetNilai<TSet>

Figure 9. Class Diagram of

ISetNilaiInterface

194 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

+generateRandom()

«interface»

ISetNilai<TSet>

+AGBlokKonfigurasiKromosom()

+AGBlokKonfigurasiKromosom()

+getDomain()

+getFungsiFitness()

+getOperasiCrossover()

+getOperasiMutasi()

+getParameter()

AGBlokKonfigurasiKromosom<T>

#parameter : AGParameterKromosom

#mutasi : IOperasiMutasi<T>

#crossover : IOperasiCrossover<T>

#fungsiFitness : IOperasiFitness<T>

#domain : ISetNilai<TSet>

+AGKromosomRealValue()

#AGKromosomRealValue()

+makeCopy()

+build()

+makeNew()

+hitungFitness()

+performCrossover()

+performMutasi()

+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()

+getParameters()

+getConfig()

+getSizeKode()

+ToString()

AGKromosomRealValue<T>

#blokKonfig : AGBlokKonfigurasiKromosom<T>

#values : T[]

#size : int

#fitness : double

Figure 10. Relation Class Diagram

AGKromRealValue,

AGBlokKonfKro and interface
ISetNilai

+generateRandom()

«interface»

ISetNilai<T>

+AGIntervalSet()

+AGIntervalSet()

+generateRandom()

+getBound()

+setBound()

-nilai : AGIntervalBounds<T>

-generatorRandom : IRandom<T>

AGIntervalSet<T>

+AGIntervalBounds()

+AGIntervalBounds()

+setLB()

+getLB()

+setHB()

+getHB()

+setBounds()

-lowerBound : T

-higherBound : T

AGIntervalBounds<T>

IRandom<T>

0..1

-nilai

1

Figure 11. Class Diagram of AGIntervalSet

and AGIntervalBounds

AGIntervalSet class, which is an

implementation of the ISetNilaiinterface,

represents the set of values that will generate

numbers randomly according to pre-defined

intervals. The boundaries of the interval

defined by the class that is composed

AGIntervalBounds on AGIntervalSet class.

The relationships design between the classes is

given in Figure 11.

Random Number Generator

The random number generator object has

task to produce random numbers that can be an

integer, float and double data types. This

object is represented as AGRandGen class that

is given in Figure 12. The generated random

numbers could be any values between 0 and 1

for float and double data types, whereas for

integer data types between 0 and the maximum

value of 32-bit.

+generateDouble()

+generateFloat()

+generate()

-randomGenerator : Random

AGRandomGenerator

Figure 12. Class Diagram AGRandGen

In this GA library has also generating

random value objects are more specific that

can be defined by user. This feature is defined

in the AGRandGenobject. There are three

classes for the random values

generatorsnamely AGRandDoubleclass for

random value with double data type,

AGRandomIntegerclass for random value with

an integer data type, and AGRandomBoolfor

random value with Booleandata type. The

relationships design between classes on

AGRandGenis given in Figure 13. The class

AGRandDouble, AGRandomInteger, and

AGRandomBool is composed in the

AGRandGen class.

+generate()

+generate()

+generate()

«interface»

IRandom<T> +AGRandomBool()

+generate()

+generate()

+generate()

+generate()

AGRandomBool<bool>

-generator : AGRandomGenerator

+generateDouble()

+generateFloat()

+generate()

AGRandGen

-randomGenerator : Random

+AGRandomDouble()

+generate()

+generate()

+generate()

AGRandomDouble<double>

-generator : AGRandomGenerator

+AGRandomInteger()

+generate()

+generate()

+generate()

AGRandomInteger<int>

-generator : AGRandomGenerator

0..1

-generator

1

0..1

-generator

1

0..1

-generator
1

Figure 13. Random Generator Class Diagrams

of AGRandGen

Hadi Suyono, Adharul Muttaqin, Eka Prakarsa Mandyartha, Design and…195

Crossover, Mutationand Selection

Operations

Crossover, mutation and selection methods

are provided as a single or multiple cross-

points, random uniform of mutation, and

roulette-wheel selection method respectively.

The crossover, mutation and selection

operations are given in Figure 14, Figure 15,

and Figure 16 respectively.

+operateCrossover()

«interface»

IOperasiCrossover<T>

+operateCrossover()

AGSinglePointCrossover<T>

Figure 14. Class Diagram of Crossover

+operateMutasi()

«interface»

IOperasiMutasi<T>

+operateMutasi()

AGMutasiRandomUniform<T>

Figure 15. Class Diagram of Mutation

+performSeleksi()

«interface»

IOperasiSeleksi

+performSeleksi()

RouletteWheelSelection<T>

Figure 16. Class Diagram of RouletteWheel

Algorithm

The GASimple class implements a simple

genetic algorithm without any overlapping of

population. TheGASimple class is composed

into Algorithm Namespace as shown in Figure

17. The overall stage process in the GA to be

done by executing the GA solution functions

that has been defined in the class.

AGPopulasi<T>

+AGSimple()

+StartEvolve()

#inisialisasi()

#startup()

#midStep()

#endStep()

+elitist()

GASimple<T>

-maksimumGenerasi : uint

-BestKromosom : IKromosom<T>

Figure 17. GASimple Class Diagram

Statistic Observer

The AGObserver class is designed to give a

summary about the best gens (chromosomes)

and fitness, number iteration required,

mutation and crossovers probabilities, and

population statistics. The design is given in

Fig. 18. This object provides the information

about chromosome population statistics such

as the best and the worst fitness values

achieved, the average fitness, and total fitness

in a population. The AGObserver class is

grouped into StatisticObserver namespace.

AGPopulasi<T>

+findIndexBest()

+findBest()

+findIndexWorst()

+findWorst()

+calculateFitnessSumAvg()

+statistikFitness()

-fitnessMax : double = 0

-fitnessMin : double = 0

-fitnessSum : double = 0

-fitnessAvg : double = 0

-kromosom_best : IKromosom<T> = null

-kromosom_worst : IKromosom<T> = null

AGObserver<T>

Figure 18. AGObserverClass Diagram

Implementation of Component Library

The class and namespaces designed to

developer the GA library are then wrapped in

the component library. The implementation of

the library in the form of dynamic link library

(*.dll) file is done by using the object-oriented

programming language that uses C #

programming language.

The fitness function and other interfaces to

execute the GA library was done by using the

console window/ command-line interfaces as

follows:

1. Object instantiationfor Fitness function:

fungsiFitness fungsiObjektif =

newfungsiFitness();

AGBlokKonfigKrom<double>

konfigKromos =

newAGBlokKonfigKromo<double>(setN

ilai, 2, parameter_kromosom,

newAGSinglePointCross<double>(),

newAGMutasiRandomUniform<double>

(), fungsiObjektif);

2. Chromosomeprototype instantiation:

AGKromosomRealValue<double>

prototipe =

newAGKromosomRealValue<double>(k

onfigurasiKromosom,2);

196 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

3. Instantiation of Population object,

chromosome prototype, and selection:

AGPopulasi<double> populasi =

newAGPopulasi<double>(prototipe,

newRouletteWheelSelection<double>(),1

0);

4. Executing the Simple GA:

AGSimple<double> algoritma =

newAGSimple<double>(ref populasi,

1000);

5. The summary result of the population:

AGObserver<double> observer =

newAGObserver<double>(populasi);

AGKromoRealValue<double>bestChrom

osome

=(AGKromoRealValue<double>)observe

r.getBestKromosom();

6. The best chomosome :

Console.WriteLine("Best Kromosom: x=

"+bestChromosome.getAt(0)+"; y=

"+bestChromosome.getAt(1)+" nilai

fitness =

"+bestChromosome.getFitness());

VALIDATION

LibAGen library validation is done by

comparing the calculation results with other

references that have known the results by

using the same data. In the validation test is

done by comparing the library LibAGen with

the results given by Michalewicz (1999) [15],

with a case as follows:

f(21 , xx)=)20sin()4sin(5,21 2211 xxxx  

Constraints: 1,120,3 1  x and 8,51,4 2  x

The proposed parameter is given as

follows: population size of 10, mutation

probability of 5% and crossover probability of

25%. The testing is performed with a different

generation number of 10.000, 50.000, and

100.000 generations. Detailed results of each

generations is given in Table 2.

With the different generationstested, the

best fitness achieved was 388.501 with x1=

11.6256 and x2 = 5.7249. Results LibAGen

validation is done by comparing the results

obtained by Michalewicz (1999) [15] as given

in Table 3. The result shows that there is no

significant difference in the results LibAGen

0.08% against Michalewicz (1999).

Since the validation case is the

maximization problem, based on Table 3 also

shows that the best fitness obtained by

LibAGen more better than Michalewiczwith

the best fitness is about 38,85010.

Table 2. Result of the LibAGen Validation

Test

Generation

The Best Variable

Chromosome
The Best

Fitness

x1 x2

10.000

12,0877 5,7247 38,0096

11,6039 5,7253 38,4243

11,6424 5,6239 38,4756

50.000

11,6253 5,7254 38,8491

11,6256 5,7249 38,8501

11,6261 5,7247 38,8490

100.000

11,6241 5,7250 38,8485

11,6241 5,7248 38,8476

11,6239 5,7251 38,8479

Table 3. Comparison of the Best Fitness

Results LibAGen and Michalewicz

(1999) [15]

Result Testing The Best Fitness

Percentage

Comparison

with (1)

Michalewicz 38,818208 -

LibAGen 38,85010 0,08%

TEST CASE

The following test case is given to be

solved for maximization problem:

MAX [f(
21

, xx)=
21

2 xx ], with constraints:

50
1
 x ; 72

2
 x ;

The solution by using the mathematical

approach, theobtained solution parameter are

5
1
x and 2

2
x ; with the maximum objective

function is f(5,2) =8. On the other hand, the

solutions with the LibAGen library, the

maximum function can be obtained as follows:

x1 = 4.986 and x2 = 2.033; with the best

fitness is f(4.986, 2,033) = 7.938.

The difference between

themathematicalcalculations and LibAGen

library solution is

%77.0%100
8

938.78




.

The difference is very small is about

(0.77% < 5%), such that the LibAGen solution

is valid. The difference between two

approaches is due to the genetic algorithm is

the stochastic solution with considering the

random approach.

Hadi Suyono, Adharul Muttaqin, Eka Prakarsa Mandyartha, Design and…197

CONCLUSION

Based on the design and testing the

conclusion can be drawn as follows:

Library genetic algorithm consists of

interfaces and classes that contain attributes

and methods. Classes and interfaces are

grouped into namespace in accordance with

their respective functions. There are seven

main namespace to establish the GA library

are: Algorithm, Chromosome,

Crom.OperCross, Crom.OperMutation,

Crom.Representation, General,

Population,Pop.Selection, and

StatisticObserver. These namespace are

designed by using object-oriented design

(OOD) such as inheritance, composition, and

generalization.

Validation library LibAGen comparing the

calculation results with the calculated standard

[15] obtained the fitness difference of 0.08%.

On the other hand, another case study has also

been tested. Based on the result, there is no

significance difference between mathematical

and LibAGen library solution. The indication

that the LibAGen can solve the problem in

accordance with a predetermined function and

correct calculation.

In addition, based on the validation test

shown that the calculation results with GA

structures will be consistent with the

increasing number of generations.

REFERENCES

[1] E.I. Amoiralis, M.A. Tsili, A.G. Kladas,

“Global transformer design optimization

using deterministic and non-

deterministicalgorithms,” in Proceedings

of International Conference on

Electrical Machines (ICEM) XXth, pp.

2323 – 2331, 2012.

[2] S. Mitra, S.K. Pal, P. Mitra, , “Data

mining in soft computing framework: a

survey,” IEEE Transactions on Neural

Networks, vol. 13, no. 1, pp. 3-14, 2002.

[3] Chun-Hao Chen, V.S. Tseng, T.P. Hong,

“Cluster-Based Evaluation in Fuzzy-

Genetic Data Mining,” IEEE

Transactions on Fuzzy Systems, vol.16,

no. 1, pp. 249–262, 2008.

[4] M.W. Mustafa, M.H. Sulaiman, H.

Shareef, S.N.A. Khalid, “Reactive power

tracing in pool-based power system

utilising the hybrid genetic algorithm and

least squares support vector Machines,”

IET Generation, Transmission &

Distribution, vol. 6, no. 2, pp. 133–141,

2012.

[5] S. Gerbex, R. Cherkaoui, A.J. Germond,

“Optimal location of multi-type FACTS

devices in a power system by means of

genetic algorithms,” IEEE Transactions

on Power Systems, vol.16 , no.3, pp. 537-

544, 2001.

[6] M. Reformat, E. Kuffel, D. Woodford,

W. Pedrycz, “Application of genetic

algorithms for control design in power

Systems,” IEE Proceedings-Generation,

Transmission and Distribution, vol. 145 ,

Issue: 4, 1998 , Page(s): 345 – 354

[7] S.N. Sivanandam and S.N. Deepa,

Introduction to Genetic Algorithms, New

York : Springer-Verlag Berlin

Heidelberg, 2008.

[8] Chambers, Lance, The Practical

Handbook of Genetic Algorithms

Applications, Second Edition. Boca

Raton: Chapman & Hall / CRC, 2001.

[9] A. Ahmad, M. Talha, “A measurement

based comparative evaluation of

effectiveness of object-oriented versus

conventional procedural programming

techniques and languages,” in

Proceedings of Software Engineering

Conference, Ninth Asia-Pacific, pp. 517 –

526, 2002.

[10] B. Stroustrup, “What is object-oriented

programming?” IEEE Software, vol. 5,

no. 3, pp. 10-20, 1988.

[11] I. Sommerville, Software Engineering,

Eighth Edition. Harlow: Addison-

Wesley, 2004.

198 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

[12] D. Gorter, “1997: The Year of the

Component”, In Proceedings of

Conference WESCON/97, pp. 320-3224-6

Nov.1997.

[13] K.M. Nor, H. Mokhlis, H. Suyono, M.

Abdel-Akher, A.H.A. Rashid, T.A. Gani,

“Development of Power System Analysis

Software Using Object Components,” In

Proceedings of TENCON 2005, IEEE

Region 10, pp. 1-6, 2005.

[14] H. Suyono, K.M. Nor, S. Yusof,

“Transient Stability Program Using

Component-Based Software Engineering,

“ IEEE Region 10 TENCON 2005, pp. 1 –

6, 2005.

[15] Z. Michalewicz, Genetic Algorithms +

Data Structures = Evolution Programs,

Springer-Verlag Berlin Heidelberg New

York, ISBN 3-540-60676-9, 1999.

