KUurRsoR

Menuju Solusi Teknologi Informasi

Vol. 7, No. 4, Desember 2014 ISSN 0216 — 0544

DESIGN AND DEVELOPMENT OF COMPONENT LIBRARY GENETIC
ALGORITHM BY USING OBJECT-ORIENTED DESIGN AND PROGRAMMING

@Hadi Suyono, PAdharul Muttaqin, and °Eka Prakarsa Mandyartha
abeDepartment of Electrical Engineering, Faculty of Engineering, University of Brawijaya
E-Mail: hadis@ub.ac.id

Abstrak

Makalah ini menyajikan desain dan pembuatan komponen library Algoritma Genetik
dengan menggunakan pendekatan object-oriented designand programming (OODP) dan
Component-based Develepment (CBD). KomponenAlgoritma Genetika (AG) merupakan
komponen software enginedibuat sendiri yang digunakan untuk membantu
menyelesaikan persoalan optimisasi dengan menggunakan struktur Algoritma Genetika
yang disebut dengan Library Algoritma Genetika (LibAGen). Metodologi OODP dan
CBD meliputi analisis kebutuhan, diagram use-case, diagram kelas dan diagram
sekuensial. Library Algoritma Genetika (LibAGen) ini terdiri dari 22 kelas yang
dikelompokkan dalam namespace berdasarkan struktur desain AG yang diperlukan
meliputi representasi populasi, fungsi evaluasi, operator genetika (crossover dan mutasi)
dan seleksi. Untuk mengukur performansi dari engine LibAGen validasi telah dilakukan
dengan menggunakan persamaan fungsi sinusoidal dua parameter. Waktu eksekusi dan
nilai optimum parameter dengan beberapa pengujian dengan variasi jumlah generasi
(iterasi) juga dilakukan pada makalah ini. Parameter AG yang digunakan adalah
probabilitas crossover 25% dan probabilitas mutasi 1%. Hasil uji validasi menunjukkan
bahwa nilai fitness terbaik adalah 388,501 dengan nilai parameter x; = 11,6256 dan x, =
5,7249. Terdapat perbedaan tidak signifikan antara nilai fitness terbaik dibandingkan
dengan hasil Michalewicz (1999) yaitu sebesar 0,08%.

Kata kunci:Algoritma Genetika, component library, object-oriented design and
programming (OODP)

Abstract

This paper presents the design and development of Genetic Algorithm (GA) library
components by using object-oriented design and programming (OODP) and Component-
based development(CBD). Genetic Algorithm component is an engine software
component which is developed by own development for solving the optimization problem
by using a structure of Genetic Algorithm (GA) called as Genetic Algorithm Library
(LibAGen). OODP and CBD methodologies include requirement analysis, use-case
diagrams, and class diagrams. Genetic Algorithm Library (LibAGen) consists of 22
classes which is grouped into namespaces based on GA design structure that include
population representation, evaluation function, genetic operators (crossover and mutation)
and selection. To measure the performance of the LibAGen engine, a validation has been
carried outby using a sinusoidal function with two-parameters. Optimal parameter with
some testing through variations of the number generations (iterations) have been
performed in this paper. The GA parameters selected are crossover probability of 25%
and mutation probability of 5%. Validation test results indicate that the best fitness and
parameters are 388,501, x; = 11,6256 and x, = 5,7249. There is no significant result in
term of the best fitness compared with Michalewicz (1999) i.e. 0.08%

Key words:Genetic Algorithm, component library, object-oriented design and
programming (OODP)

189


mailto:hadis@ub.ac.id

190 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

INTRODUCTION

In solving the optimization problem, there are
two widely used approaches, namely the
deterministic methods and non deterministic
approaches [1]. The deterministic method is an
optimization solution by using mathematical
and numerical approaches, whereas the non-
deterministic method is by using a heuristic
probability approach and artificial intelligent
(Al). The heuristic probability approach and
the Al, Genetic Algorithm (GA) are widely
applied for solving The optimization as in the
data mining process[2,3], the power system
problem [4,5], control systems[6] and other
applications.

Genetic Algorithms (GA) is a computational
approach to solve an optimization problem by
modeling the problem in a process as if
biological evolution [7]. In general, the stages
in the GA is starting with establishment of a
set of candidates for a potential solution that
satisfies all constraints required in the
initialization process.

The set of potential solutions is defined at the
beginning called as chromosomes.
Chromosomes are formed randomly and can
be as an array numbers in binary or decimal
form that is generated and then selected
according to the required constraints. The
entire set of chromosomes represents a
population. Furthermore, these chromosomes
will be evolved in several iterations, called
generations. The new generation (offspring)
generated through the process of crossover and
mutation. Offspring chromosomes is evolved
by a suitability fitness that will be selected as
the best results while others are discounted
[7,8].

To simplify the analysis and implementation
of GA in solving the optimization problem,
software with several approaches is needed.
The software should be designed and
developed thus the application could be
updated and maintenance easily. In general,
the design and development methodologies are
widely applied software is modular or
procedural approach in which a problem is
divided in the form of the
function/procedure/subroutine that represents
sub-problem required in the whole problem
[9].Another  design and implementation
approach is design and object-oriented
programming (OODP) and component-based

development (CBD) [10,11]. CBD and
reusability techniques are a new approach that
have many benefits including reducing the
time, resources, costs, and increase
productivity in software development [11,12].
CBD can be developed via two programming
approaches, structural-based design or object-
oriented design (OOD). However, the OOD
approach is widely applied in the development
of software applications where a complex
system can be maintained more easily. The
design is based on the object-oriented
approach allows complex problems to be
divided into small parts. OODP and CBD
implementation can be found in several
references [13,14].

Genetic algorithm library is a component
software that provides a problem solution by
using genetic algorithm structure such as
chromosome representation, evaluation
function, and genetic operators such as

crossover, mutation, and selection.

STRUCTURE AND LIBRARY
DESIGN

Library Structure

The Genetic Algorithm (GA) library
structure is given in Figure 1. Library structure
consists of three main layers. The first layer
consists of units that are not directly related to
the GA, but the implementation of these units
is important. GA library implements number
random generator to provide the randomly
number with different data types such as
integer, float, and Boolean. The summary
result of chromosome and population
operation is provided by statistic observer.
Such features provide common functions used
by other units which are at the higher layers in
the library.

Simple Genetic
Algorithm

Algoritma

Random number
Chromosome generator,
Statistic Observer

Population

uoNe UBS3IRY BWIOSOW 0Y)
‘UoiaUN4 sSaUYH JaA0SSOL) ‘UoEINIA

Selection

Figure 1.Genetic Algorithm Structure Library



Hadi Suyono, Adharul Muttagin, Eka Prakarsa Mandyartha, Design and...191

The middle layer consists of three units i.e.
Chromosome, Population, and Algorithm. The
main features of the library are implemented in
this layer. The chromosomes unit represents
the generating of chromosomes and population
that define the behavior in the system. The
Algorithm provides the chromosome process.

The highest layer includes units that deal
with the genetic operations such as crossover,
mutation, and fitness operation. The
population unit is a unit that controls a set of
chromosomes (population). The selection
operations such as roulette wheel and rank
ordering of the fitness are included. The last
unit is the Simple GA unit that implements the
problem solutions process by using the GA
structure.

Use-Case Diagram

Use case model system describes the
interaction between the actors who acquired
the library with the library feature and
environment. The components required to
build the library are represented as use-cases.
In the LibAgen library design, there are seven
components required i.e. selection of
chromosome representation, definition of
fitness function, crossover method selection,
mutation method selection, performing the
algorithm, and acquired the solution statistic.
The specific actor in this design is the library’s
user. The interaction actor and use-cases is
given in Figure 2.

Genetic Algorithm Library

Selection of Chomosome

Representation
Fitness Function
Definition
4

Crossover Method
S Selection

Mutation Method

Selection

>

Selection Method

X\ Performing of Algorithm

Statistical Solution

Figure 2. Diagram use-case library

Actor

Selection of chromosomes representation
use-case is to select or define the appropriate
chromosome representation such as binary
encoding, float or real value, or permutation
approaches. Fitness function use-case defines
the fitness function, in which the fitness
function allows the user library to provide any
specific function and later the fitness value
will be provided. Crossover and mutation use-
cases are used to select the crossover and
mutation methods provided by the library or
the user can define by their own method.

Selection method and perform the
algorithm use-cases are used to define the
algorithm selection methods that not provided
by the library and to solve the problems that
have been defined previously. Population
statistics use-case is conducted to obtain data
on the best chromosome, the average fitness,
and maximum or minimum fitness values.

Library Design

Units contained in the GA library structure
consists of group classes and interfaces.
Grouping of some classes and interfaces in a
single component called a package - further in
this paper is called the namespace. Table 1
presents a list compiled library namespace of
genetic algorithm with their description.

Representation
—| :- T mutationoperation
i |
! |
' 1
CrossoverOperation : :
N C
N ki
Chromosome SelektionOperation
[ > '
| |
| T | T
| | | |
| | | |
| | | |
i . i i
| 1 |
L | !
General H |
F- |
Algorithm > . N/
N
__________ Population
| 1
I -
|
i n
|
i i
: ) StatisticObserver :

Fig. 3. Namespace relation



192 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

Table 1. List of namespace and description

Namespace Description

Algorithm Consist of classes required to
implement the genetic algorithm
structure

Chromosome Consist of interfaces and classes
needed to implement the
behavior and representation of
chromosomes and genetic
operations

Chromosome.  Consist of the implementation of

CrossoverOper  crossover operation

ation

Chromosome.  Consist of the implementation of

MutationOpera  mutation operation

tion

Chromosome.  Consist of the implementation of

Representation  chromosome representation

General Contains common classes used

by the library

Consist of the classes used to

create a Population of

chromosome and genetic

operation

Population.Sel ~ Consist of the implementation of

ectioOperation  the operation selection

StatisticObserv  Consist of the classes used for

er providing the Population statistic
information

Population

Genetic algorithm library architecture
design is described as a relation between
namespace to represent the overall system
modeling. Each namespace consists of the
class members. The relationships among
namespace can be seen in Figure 3. The
relationships are depicted with dashed arrows
indicate that the namespace end used by the
connecting arrows (aggregation), for example,
the General namespace used by namespace
Chromosome, Population, algorithms, and also
by other namespaces.

«<interface>
IKromosom<T=>=
+makeCopyQ
+buildQ
+makeNew(Q
+hitungFitness(
+performcCrossover(Q

+performMutasi(Q
+getCode(Q
+setCode(Q
+getAt

+setAtQ
+getFitness(
+getParameters(Q
+getConfig(Q
+getSizeKode()

Figure 4. Class Diagram of IKromosom
Interface

CLASSES DESIGN
Chromosome

Chromosome is the main object in the GA
structure library, which is defined by
IKromosomclass. IKromosom class is the
actual implementation of the interface for
devoping the chromosome. IKromosom class
is shown in Fig. 4, in which there are many
functions associated to the operation of the
establishment and operation of chromosomes,
such as makeNew() function to create a new
chromosome, hitungFitness() function is
the process of calculating fitness value of each
chromosome.

AGBIlokKonfigurasiKromosom<T>

#parameter : AGParameterKromosom
#mutasi : IOperasiMutasi<T>
#crossover : |I0OperasiCrossover<T>
#fungsiFitness : I0OperasiFitness<T>
#domain : ISetNilai<T>[ ]

+AGBlokKonfigurasiKromosom()
+AGBIlokKonfigurasiKromosom()
+getDomain()
+getFungsiFitness()
+getOperasiCrossover()
+getOperasiMutasi()
+getParameter()

Figure 5. Class Diagram of
AGBlokKonfigKrom

Chromosome configuration data includes
parameters of chromosomes, mutation and
crossover methods, fitness function to be used,
and chromosome  representation.  The
chromosome configuration is defined in the
AGBIlokKonfigKrom class as given in Figure.
5.

Crossover and mutation operations, and
also the fitness function is defined by the
interface  of each class such as
IOperasiCrossover,  IOperasiMutasi,  and
loperasiFitness respectively. 10perasiFitness is
an interface for the fitness function that can be
defined by users. Those interface and classes
are clustered into the Chromosome
namespace.



Hadi Suyono, Adharul Muttagin, Eka Prakarsa Mandyartha, Design and...193

AGPopulasi<T>
~populationSize ;@ int
-metodeSeleksi @ |OperasiSeleksi
-kromosom @ Arraylist
~prototipe @ IKromosom<T>
+AGPopulasi()
+inisialisasiPopulasi()
+seleksi()
+ocrossover|)
+mutasi(l
+getSizel)
+getkKromosomi(}
+gethti)
+replacelndividul}

Figure 6. Class Diagram of AGPopulasi

Population

Population object contains of chromosome
and population configuration objects that is
given in Figure 6. Configuration population
includes the population parameter such as the
population size and the proposed selection
method. AGPopulasiis assembled into
Population namespace.

Representation ofChromosome

AGKromosomRealValue class can be
used for the representation of the chromosome
that represents a solution to the real number
coding, where the details of the definition of
the class diagram shown in Figure 7.
AGKromosomRealValue class is a subclass
of class IKromosom.

«interface»
IKromosom<T>

+makeCopy()
+build()
+makeNew()
+hitungFitness()
+performCrossover()
+performMutasi()
+getCode()
+setCode()
+getAt()

+setAt()
+getFithess()
+getParameter()
+getConfig()
+getSizeKode()

AGKromosomReal Value<T>
#blokKonfig : AGBlokKonfigurasiKromosom<T=>
#values : T[]

#size : int

#fithess : double
+AGKromosomRealValue()
#AGKromosomRealValue()
+makeCopy()

+build()

+makeNew()
+hitungFitness()
+performCrossover()
+performMutasi()
+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()

+getParameters()
+getConfig()
+getSizeKode()
+ToString()

Figure 7. Class Diagram of
AGKromosomRealValue

Genetic operations, namely crossover and
mutation, can be defined and implemented in
separate classes. Furthermore, object classes
are defined in AGBlokKonfigKrom as
given in Figure 8.

«interface»
|I0perasiCrossover<T>
+operateCrossover()

AGBlokKonfigurasiKromosom<T>
#parameter : AGParameterKromosom
#mutasi : I0perasiMutasi<T>
#crossover : |OperasiCrossover<T>
#fungsiFitness : I0perasiFitness<T>

«interface» #domain : ISetNilai<T>

IOperasiMutasi<T> +AGBIlokKonfigurasiKromosom()
+operateMutasi() +AGBIokKonfigurasiKromosom()
+getDomain()
+getFungsiFitness()

\|/ +getOperasiCrossover()
+getOperasiMutasi()
«interface» +getParameter()
|0OperasiFitness<T>

+evalFitness()

AGKromosomReal Value<T>

#blokKonfig : AGBlokKonfigurasiKromosom<T>
#values : T[]

#size . int

#itness : double

+AGKromosomRealValue()
#AGKromosomRealValue()
+makeCopy()

+build()

+makeNew()
+hitungFitness()
+performCrossover()
+performMutasi()
+getCode()

+setCode()

+getAt()

+setAt()

+getFitness()
+getParameters()
+getConfig()
+getSizeKode()
+ToString()

Figure 8. Relationship of class diagram
between
AGKromosomRealValueclass

and GA operation interfaces

In most optimization problem by using the
GA solution, the variables which are
represented as chromosome have restrictions
called as constraints. These constraints on the
library object is realized through ISetNilai
class interface. ISetNilaiclass interface
from the object set with the value of the class
definition is given in Figure 9. The relation of
the three classes AGKromRealValue,
AGBlokKonfKro and ISetNilaiinterface
are given in Figure 10.

«<interface>
ISetNilai<TSet>

+generateRandom(Q

Figure 9. Class Diagram of
ISetNilailnterface



194 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

«interface»
1SetNilai<TSet>

+generateRandom()

AGKromosomReal Value<T>
[#blokKonfig : AGBlokKonfigurasiKromosom<T>
fitvalues : T[]
f#size : int
lifitness : double AGBIlokKonfigurasiKromosom<T>
+AGKromosomRealValue() #parameter ; AGParameterkromosom
#AGKromosomRealValue() #mutasi : [OperasiMutasi<T>
+makeCopy() crossover : IOperasiCrossover<T>
+build() #fungsiFitness : IOperasiFitness<T>
+makeNew() #domain : ISetNilai<TSet>

+hitungFitness()

+AGBlokKonfigurasiKromosom()

+performCrossover() A I
i -AGBlokKonfigurasiKromosom|
+performMutasi() +QElD0main()g )
:g::gggsg +getFungsiFitness()
+getAt() +getOperasiCrossover()
+SetAt() +ge}9pera5|Mul)as\()
getf

+getFitness()
+getParameters()
+getConfig()
+getSizeKode()
+ToString()

Figure 10. Relation Class Diagram

AGKromRealValue,
AGBlokKonfKro and interface
ISetNilai
«interface»
ISetNilai<T>
+generateRandom()
|
i
|
AGlntervalBounds<T> . i
. |
Eév:er?;;::d .TT AGIntervalSet<T>
+AGIntervalBounds() ilai -nilai : AGIntervalBounds<T>
+AGIntervalBounds() 0.1 [generatorRandom : IRandom<T>
+setLB() +AGIntervalSet()
+getLB() +AGIntervalSet()
+setHB() +generateRandom()
+getHB() +getBound()
+setBounds() +setBound()

IRandom<T>

Figure 11. Class Diagram of AGIntervalSet
and AGIntervalBounds

AGlIntervalSet class, which is an
implementation of the ISetNilaiinterface,
represents the set of values that will generate
numbers randomly according to pre-defined
intervals. The boundaries of the interval
defined by the class that is composed
AGlIntervalBounds on AGIntervalSet class.
The relationships design between the classes is
given in Figure 11.

Random Number Generator

The random number generator object has
task to produce random numbers that can be an
integer, float and double data types. This
object is represented as AGRandGen class that

is given in Figure 12. The generated random
numbers could be any values between 0 and 1
for float and double data types, whereas for
integer data types between 0 and the maximum
value of 32-bit.

AGRandomGenerator
-randomGenerator : Random

+generateDouble()
+generateFloat()
+generate()

Figure 12. Class Diagram AGRandGen

In this GA library has also generating
random value objects are more specific that
can be defined by user. This feature is defined
in the AGRandGenobject. There are three
classes for the random values
generatorsnamely AGRandDoubleclass for
random value with double data type,
AGRandomintegerclass for random value with
an integer data type, and AGRandomBoolfor
random value with Booleandata type. The
relationships design between classes on
AGRandGenis given in Figure 13. The class
AGRandDouble, AGRandominteger, and
AGRandomBool is composed in the
AGRandGen class.

-generator

]
AGRandGen
generlor L ndomGenerator : Rendom|
+generateDouble()
1 [+generateFloat() -generator
+generate()
0.1 0.1
AGRandomDouble<double> pra— AGRandomB(;okboub
« » -( N
-generator : AGRandomGenerator Random<T>| gAe:irator.AGRa;w omGenerator
:A;F;?ari%mmub\e() == Dlrgenerae) (-~ - ~|+generate()
+generale() +generate() +generate()
+generaleo ener) generde(
g +generate()
|
I
|
AGRandominteger<int>
0.1 -generator : AGRandomGenerator
LAGR )
+generate()
+generate()
+generate()

Figure 13. Random Generator Class Diagrams
of AGRandGen



Hadi Suyono, Adharul Muttagin, Eka Prakarsa Mandyartha, Design and...195

Crossover, Mutationand Selection
Operations

Crossover, mutation and selection methods
are provided as a single or multiple cross-
points, random uniform of mutation, and
roulette-wheel selection method respectively.
The crossover, mutation and selection
operations are given in Figure 14, Figure 15,
and Figure 16 respectively.

«interface»
|OperasiCrossover<T>

+operateCrossover()

|
AGSinglePointCrossover<T>

+operateCrossover()

Figure 14. Class Diagram of Crossover

«interface»
|OperasiMutasi<T>

-+operateMutasi()

AGMutasiRandomUniform<T>|

+operateMutasi()

Figure 15. Class Diagram of Mutation

«interface»
|OperasiSeleksi
+performSeleksi()

1
RouletteWheelSelection<T>

+performSeleksi()

Figure 16. Class Diagram of RouletteWheel
Algorithm

The GASimple class implements a simple
genetic algorithm without any overlapping of
population. TheGASimple class is composed
into Algorithm Namespace as shown in Figure
17. The overall stage process in the GA to be
done by executing the GA solution functions
that has been defined in the class.

GASimple<T>
-maksimumGenerasi : uint
-BestKromosom : [Kromosom<T>
+AGSimple()
+StartEvolve()

Hinisialisasi()
#startup()
#midStep()
#endStep()
+elitist()

AGPopulasi<T>

Figure 17. GASimple Class Diagram

Statistic Observer

The AGObserver class is designed to give a
summary about the best gens (chromosomes)
and fitness, number iteration required,
mutation and crossovers probabilities, and
population statistics. The design is given in
Fig. 18. This object provides the information
about chromosome population statistics such
as the best and the worst fitness values
achieved, the average fitness, and total fitness
in a population. The AGObserver class is
grouped into StatisticObserver namespace.

AGObserver<T>

-fitnessMax : double = 0
-fitnessMin : double = 0
-fitnessSum : double = 0

AGPopulasi<T> -fitnessAvg : double =0
-kromosom_best : IKromosom<T> = null
-kromosom_worst : IKromosom<T> = null

+findindexBest()
+findBest()
+findindexWorst()
+findWorst()
+calculateFitnessSumAvg()
+statistikFitness()

Figure 18. AGObserverClass Diagram
Implementation of Component Library

The class and namespaces designed to
developer the GA library are then wrapped in
the component library. The implementation of
the library in the form of dynamic link library
(*.dll) file is done by using the object-oriented
programming language that uses C #
programming language.

The fitness function and other interfaces to
execute the GA library was done by using the
console window/ command-line interfaces as
follows:

1. Object instantiationfor Fitness function:
fungsiFitness fungsiObjektif =
newfungsiFitness();
AGBIlokKonfigkrom<double>
konfigKromos =
newAGBIlokKonfigkromo<double>(setN
ilai, 2, parameter_kromosom,
newAGSinglePointCross<double>(),
newAGMutasiRandomUniform<double>
(), fungsiObjektif);

2. Chromosomeprototype instantiation:
AGKromosomRealValue<double>
prototipe =
newAGKromosomRealValue<double>(k
onfigurasikromosom,2);



196 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

3. Instantiation of Population object,
chromosome prototype, and selection:
AGPopulasi<double> populasi =
newAGPopulasi<double>(prototipe,
newRouletteWheelSelection<double>(),1
0);

4. Executing the Simple GA:
AGSimple<double> algoritma =
newAGSimple<double>(ref populasi,
1000);

5. The summary result of the population:
AGObserver<double> observer =
newAGObserver<double>(populasi);
AGKromoRealValue<double>bestChrom
osome
=(AGKromoRealValue<double>)observe
r.getBestKromosom();

6. The best chomosome :
Console.WriteLine("Best Kromosom: x=

"+bestChromosome.getAt(0)+"; y=
"+bestChromosome.getAt(1)+" nilai
fitness =

"+bestChromosome.getFitness());
VALIDATION

LibAGen library validation is done by
comparing the calculation results with other
references that have known the results by
using the same data. In the validation test is
done by comparing the library LibAGen with
the results given by Michalewicz (1999) [15],
with a case as follows:

f( %y, X, )=21,5+ X, sin(4z%,) + X, sin(207x, )
Constraints: -3,0<x, <121and4,1<x, <58

The proposed parameter is given as
follows: population size of 10, mutation
probability of 5% and crossover probability of
25%. The testing is performed with a different
generation number of 10.000, 50.000, and
100.000 generations. Detailed results of each
generations is given in Table 2.

With the different generationstested, the
best fitness achieved was 388.501 with x;=
11.6256 and x; = 5.7249. Results LibAGen
validation is done by comparing the results
obtained by Michalewicz (1999) [15] as given
in Table 3. The result shows that there is no
significant difference in the results LibAGen
0.08% against Michalewicz (1999).

Since the validation case is the
maximization problem, based on Table 3 also
shows that the best fitness obtained by

LibAGen more better than Michalewiczwith
the best fitness is about 38,85010.

Table 2. Result of the LibAGen Validation

Test

The Best Variable

Generation Chromosome The Best
Fitness

X1 X2
12,0877 5,7247 38,0096
10.000 11,6039 5,7253 38,4243
11,6424 5,6239 38,4756
11,6253 5,7254 38,8491
50.000 11,6256 5,7249 38,8501
11,6261 5,7247 38,8490
11,6241 5,7250 38,8485
100.000 11,6241 5,7248 38,8476
11,6239 5,7251 38,8479

Table 3. Comparison of the Best Fitness
Results LibAGen and Michalewicz
(1999) [15]

Percentage
Result Testing The Best Fitness Comparison
with (1)
Michalewicz 38,818208 -
LibAGen 38,85010 0,08%
TEST CASE

The following test case is given to be
solved for maximization problem:

MAX [f(x,,x,)=2x, — x, ], with constraints:

0<x,<5;2<x,<7;

The solution by using the mathematical
approach, theobtained solution parameter are
x, =5andx, = 2; with the maximum objective

function is f(5,2) =8. On the other hand, the
solutions with the LibAGen library, the
maximum function can be obtained as follows:
x1 = 4.986 and x2 = 2.033; with the best
fitness is f(4.986, 2,033) = 7.938.

The difference between
themathematicalcalculations and LibAGen
library solution is

8—7.938

x100% = 0.77%

The difference is very small is about
(0.77% < 5%), such that the LibAGen solution
is wvalid. The difference between two
approaches is due to the genetic algorithm is
the stochastic solution with considering the
random approach.



Hadi Suyono, Adharul Muttagin, Eka Prakarsa Mandyartha, besign and...197

CONCLUSION

Based on the design and testing the
conclusion can be drawn as follows:

Library genetic algorithm consists of
interfaces and classes that contain attributes
and methods. Classes and interfaces are
grouped into namespace in accordance with
their respective functions. There are seven
main namespace to establish the GA library

are: Algorithm, Chromosome,
Crom.OperCross, Crom.OperMutation,
Crom.Representation, General,

Population,Pop.Selection, and
StatisticObserver. These namespace are
designed by using object-oriented design
(OOD) such as inheritance, composition, and
generalization.

REFERENCES

[1] E.I. Amoiralis, M.A. Tsili, A.G. Kladas,
“Global transformer design optimization
using deterministic and non-
deterministicalgorithms,” in Proceedings
of International  Conference on
Electrical Machines (ICEM) XXth, pp.
2323 — 2331, 2012.

[2] S. Mitra, S.K. Pal, P. Mitra, , “Data
mining in soft computing framework: a
survey,” IEEE Transactions on Neural
Networks, vol. 13, no. 1, pp. 3-14, 2002.

[3] Chun-Hao Chen, V.S. Tseng, T.P. Hong,
“Cluster-Based Evaluation in Fuzzy-
Genetic Data Mining,” IEEE
Transactions on Fuzzy Systems, vol.16,
no. 1, pp. 249-262, 2008.

[4] MW. Mustafa, M.H. Sulaiman, H.
Shareef, S.N.A. Khalid, “Reactive power
tracing in pool-based power system
utilising the hybrid genetic algorithm and
least squares support vector Machines,”
IET  Generation, Transmission &
Distribution, vol. 6, no. 2, pp. 133-141,
2012.

[5] S. Gerbex, R. Cherkaoui, A.J. Germond,
“Optimal location of multi-type FACTS
devices in a power system by means of
genetic algorithms,” IEEE Transactions
on Power Systems, vol.16 , no.3, pp. 537-
544, 2001.

Validation library LibAGen comparing the
calculation results with the calculated standard
[15] obtained the fitness difference of 0.08%.
On the other hand, another case study has also
been tested. Based on the result, there is no
significance difference between mathematical
and LibAGen library solution. The indication
that the LibAGen can solve the problem in
accordance with a predetermined function and
correct calculation.

In addition, based on the validation test
shown that the calculation results with GA
structures will be consistent with the
increasing number of generations.

[6] M. Reformat, E. Kuffel, D. Woodford,
W. Pedrycz, “Application of genetic
algorithms for control design in power
Systems,” IEE Proceedings-Generation,
Transmission and Distribution, vol. 145 ,
Issue: 4, 1998 , Page(s): 345 — 354

[7] S.N. Sivanandam and S.N. Deepa,
Introduction to Genetic Algorithms, New
York ; Springer-Verlag Berlin
Heidelberg, 2008.

[8] Chambers, Lance, The Practical
Handbook of Genetic  Algorithms
Applications, Second Edition. Boca
Raton: Chapman & Hall / CRC, 2001.

[9] A. Ahmad, M. Talha, “A measurement
based comparative  evaluation  of
effectiveness of object-oriented versus
conventional procedural programming
techniques and languages,” in
Proceedings of Software Engineering
Conference, Ninth Asia-Pacific, pp. 517 —
526, 2002.

[10] B. Stroustrup, “What is object-oriented
programming?” IEEE Software, vol. 5,
no. 3, pp. 10-20, 1988.

[11] I. Sommerville, Software Engineering,
Eighth  Edition. Harlow: Addison-
Wesley, 2004.



198 KURSOR Journal Vol. 7, No. 4, Desember 2014, page 189-198

[12] D. Gorter, “1997: The Year of the
Component”, In  Proceedings  of
Conference WESCON/97, pp. 320-3224-6
Nov.1997.

[13] K.M. Nor, H. Mokhlis, H. Suyono, M.
Abdel-Akher, A.H.A. Rashid, T.A. Gani,
“Development of Power System Analysis
Software Using Object Components,” In
Proceedings of TENCON 2005, IEEE
Region 10, pp. 1-6, 2005.

[14] H. Suyono, K.M. Nor, S. Yusof,
“Transient  Stability Program Using
Component-Based Software Engineering,
“ IEEE Region 10 TENCON 2005, pp. 1 -
6, 2005.

[15] Z. Michalewicz, Genetic Algorithms +
Data Structures = Evolution Programs,
Springer-Verlag Berlin Heidelberg New
York, ISBN 3-540-60676-9, 1999.



