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Abstract

Quadcopter is a type of Unmanned Aerial Vehicle (UAV) technology, characterized by
simple mechanical structure, ease of flying and good maneuvering. In its usage, the
quadcopter is required to evade obstacles in its path. Thus, an obstacle avoidance
system in a 3D space with both static and dynamic obstacles is. Avoidance direction is
determined by considering nearest distance based on the dimensions of the obstacle.
Due to limited battery capacity, the quadcopter also needs to consider energy efficiency
in obstacle avoidance. The obstacle’s properties and movement direction are also
needed in considering the correct avoidance direction. Using a modified Local Mean
K-Nearest Centroid Neighbor (LMKNCN) algorithm results in a 97.5% accuracy for
avoidance direction decision. The learning process between training data and testing
data yielded a computation duration of 0.142341 seconds. The simulations showed that
the quadcopter is able to avoid static and dynamic obstacles to reach its destination
without collisions.
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INTRODUCTION

A quadcopter is a type of unmanned aerial
vehicle (UAV) with 4 rotors serving as lift and
propulsion. A quadcopter’s advantages
compared to other UAV configurations include
simple mechanical structure, ease of flying and
maneuvering. These advantages allow the
quadcopter to be used in many fields, such as
farming [1], surveillance [2], construction [3],
search and rescue [4], delivery [5], and such
others.

In doing its assigned tasks, a given
quadcopter must avoid many obstacles in its
path. Its avoidance system must be adaptable
towards both static and dynamic obstacles to
make sure the quadcopter is safe and
undamaged.

109

According to [6], avoidance direction
decision needs to consider energy usage and
distance due to limitations in the quadcopter’s
battery capacity. This research used K-Nearest
Neighbor (KNN) algorithm for avoidance,
using travel distance and minimum energy
usage. This method is simple and effective in
avoiding static obstacles of various dimensions
However, there are still a possibility that the
quadcopter hits a dynamic obstacle with certain

speed.
Dynamic obstacle avoidance mechanism by
predicting movement  trends  (static,

dynamically to the left or right) to determine the
robot’s linear speed is discussed in [7]. The
robot may avoid the obstacle by increasing and
decreasing speed, or outright stopping to wait
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for the obstacle to pass. This fuzzy logic-based
method was able to predict movement trends
and assist the robot in choosing the correct
speed to avoid the obstacle. The movement
trend prediction concept can be adapted
towards an avoidance system for dynamic
obstacles of varying speeds and directions.

Building upon [6], there is also a need for
predicting the obstacle’s movement trends to
alter the quadcopter’s movement direction in
addition to its linear speed, thus minimizing
evasion travel distance. However, running both
movement trend prediction and speed
adjustment burdened the KNN algorithm used
in [6], resulting in more errors and eventual
evasion failures. Local Mean K-Nearest
Centroid Neighbor (LMKNCN) algorithm, a
development from KNN, was proved by [8]-[9]
to have less classification errors than its
predecessor, thus its inclusion in the proposed
system.

The LMKNCN method was tested in [8]-[9]
to require a longer calculation method than
KNN, which may influence calculation time,
especially with high amount of training data.
Thus, the algorithm needs to be modified to
modify the algorithm to reduce the amount of
executed training data. Grouping training data
into a few clusters was proposed by [10]-[11],
with each group being represented by a single
data point, usually taken from the clusters’
midpoints. The results gained by [10]-[11]
showed that this method may reduce
computation time despite the large number of
training data involved.

From the previously discussed research, this
paper proposes an avoidance system using a
modified LMKNCN  algorithm.  The
modification involved clustering the training
data to reduce the amount of data processed by
the algorithm in a given time, thus reducing
computation time in the classification process.
With this modification, it is hoped that the
quadcopter will be able to avoid static and
dynamic obstacles with a fast, accurate
avoidance decision while also minimizing
distance and energy. The avoidance
classification system has five classes, that is
evading to the left, right, up, down, or stopping,
based on the obstacle’s movement trends and
dimensions between the quadcopter and the
obstacle.

MATERIAL AND METHODS

This chapter discusses the system’s
concepts. The quadcopter unit used in the
system is a Quanser Qdrone as seen in Fig 1.
The obstacles used will be static and dynamic,
while the avoidance system used the LMKNCN
method to determine evasion direction.

Fig 1. Quadcopter quanser gdrone
Table 1. Quanser qdrone parameters

Parameter Symbol  Value
Mass (kg) m 1
Gravity (kg/ m?) g 9.81
Moment of inertia

on the X axis Jx 0.03
(kg.m?)

Moment of inertia

on the Y axis Jy 0.03
(kg.m?)

Moment of inertia

on the Z axis Jx 0.04
(kg.m?)

Distance  between

rotor and center of | 0.2
mass (m)

Drag force d 3.13x10°
Thrust force b 7.5x107
Bandwidth actuator ® 15
(rad/s)

Thrust force K 120

constant (N)

Quadcopter System

The Quanser Qdrone, a quadcopter designed
for outdoor research, was chosen for this
research. The quadcopter had a carbon fiber
frame for a reduced weight, contributing to
better maneuvering and less risk of catastrophic
collisions. The drone has 40 cm x 40 cm x15
cm dimensions and is equipped with propeller
protectors.
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The quadcopter’s system model [12] is
represented in (1), where X, Y, Z is the
quadcopter’s position while p, g, r is the roll,
pitch and yaw speed. The parameters used in
the drone are shown in Table 1 depending on

the type of drone. The system schema can be
seen in Fig 2.

Obstacle Detection

An obstacle may be detected at a minimum
distance of 1 meter to the quadcopter, which
may be static or dynamic. When an obstacle is
detected, direction detection is done to
determine its movement, (moving to the left,
right, up, down, or static).

After detecting an obstacle, the quadcopter
reads its dimensions h,, h;, h,, and h; to
classify the obstacle using the modified
LMKNCN method. The classification results
will be turned into waypoints for the
quadcopter’s path, changing its direction from
the initial target and avoiding the obstacle [13].

Classification Method

This system used a modified Local Mean K-
Nearest Centroid Neighbor (LMKNCN)
algorithm to reduce the number of calculations
needing to be done. Once a dataset has been
chosen according to the detected obstacle, the
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next step is grouping the data into clusters, each
with a cluster point determined using the
following equation:

k
1
Cp; =szj (2

j=1
where Cp; is the i-th cluster point, k is the
number of data points, and x; is a data point.

In the testing data process, the first step is
finding the nearest neighbor between new data
and some cluster points. To calculate the
nearest neighbor distance the following
equation was used:

d(x,Cp) =

where x is new data and Cp; is the i-th cluster
point

After finding the nearest cluster, the next
step is finding the nearest neighbor between the
new data and data inside the cluster using
LMKNCN [8]-[9]. The steps are as follows:
a) Find the nearest neighbor g, between testing

data x and training data in cluster j aij

using an Euclidean distance equation shown
in (4).

b) Find the nearest centroid neighbor Cj
between testing data and each centroid data.
The new centroid data is gleaned from the
midpoint between a nearest neighbor g, to
the k-th neighbor.

1 k
Ce=7 45 ©)
j=1

After finding the nearest centroid neighbor,

the next step is finding k nearest neighbors.

c) Calculating local average centroid vector
ulNEN from each class cl

i\’IcCN - z NCN (6)

where xNCN

class c;.

d) Finding the distance d(x, u}‘M) between x
and the local average centroid vector uN<N
using (7).

is the tramlng data for each

n

Z(x —ulNy2  (7)

k=1

d(x uNCN

e) Finding testing data x into class ¢, having
the nearest distance between local average
centroid vector u\" and testing data x as
(8).

c = arg mm d(x, uNCN

(8)

Deviance Distance

The obstacle will be detected by the
quadcopter at a distance of 1 meter. The
quadcopter will record the obstacle’s
dimensions (hy, h;, h,, hg) against the
intersection between the quadcopter and the
target point.

Fig 3 illustrates how a quadcopter would
read each deviance distance, with a side view in
Fig 4 (a) and a top view in Fig 4 (b). Each
deviance distance (6; &, &y, 64) Will be
calculated using (9).

61' = tan Hi.di
h; +t
9; = tan™?! (ld—L) ©)
where §; is a deviance distance i, 6; is the
deviance angle i, h; is obstacle dimension i, t
is the safe distance and d, is the distance
between the obstacle and the quadcopter.

Energy

Alongside considering deviance distance,
the quadcopter must also consider energy [14].
In this case, there are two energy types [15].
Kinetic energy happens where the quadcopter
moves without any altitude changes, whereas
potential energy happens where the quadcopter
changed altitude. Calculating kinetic energy
may be done using (10).

1
AE, = Emv2 (10)

where m is the quadcopter’s mass (kg) and V
is its velocity (m/s). Assume that there is no
energy loss from the quadcopter changing
altitudes. Calculating potential energy may be
done using (11).

AE, =m.g.Ah (11)
where m is the mass of the quadcopter, g is
gravity and Ah is the height difference between
the quadcopter’s and the avoidance point’s
coordinates.



AER ; is the sum of energy needed by the
guadcopter to move between its initial
coordinates (Xg, Yz, Zz) to the avoidance
point’s coordinates (Xg, Yx, Zx). The needed
energy sum AEy ; is defined as:

AE; ; = AE, + AE,, (12)
where AE,, is the potential energy and AEj, is
the kinetic energy of the quadcopter.

Evading in different directions require
different amounts of energy needed. Evading in
lateral directions (left or right) results in
potential energy AE, being zero due to no
changes in altitude. However, when the
quadcopter evades in vertical directions (up or
down), the altitude changes mean the presence
of potential energy AE,.

Quadcopter Control

This research used a proportional-derivative
(PD) controller to control the quadcopter’s
movements. The controller’s inner loop is
devoted to attitude control, while its outer loop
is devoted to position control [16]. The
guadcopter control system is illustrated in Fig.
5.

From the tuning experiments, the
proportional-derivative  control  parameters
used in this research are as follows:

kp,X = 5, kp,y = 5 ’kp,Z = 20
kd,X = 5, kd,Y =5 'kd,Z =10
kpp = 3000, k,g = 3000,k,,, = 3000
kap = 300,kgp = 300,kgy = 300
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Fig 3. Deviance distance illustration

Explanation:

a : Deviance Up

b : Deviance Left
c : Deviance Right
d : Deviance Down
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Fig 4. Deviance distance illustration (a) Side
view (b) Top view

Table 2. Cluster training data

h, h h, hy

No. m) (m) (m) (m) Cluster

1 05 075 225 25 1

2 05 15 15 25 2

3 05 225 075 25 3

4 15 075 225 15 4

5 15 15 15 15 5

6 15 225 075 15 6

7 25 075 225 05 7

8 25 15 15 05 8

9 25 225 075 05 9

Table 3. Obstacle training data

hu hl hr hd

No. m  (m) (m)  (m) Class
1 001 02 28 299 Up
2 004 04 26 296  Down
3 021 02 28 279 Left
4 024 04 26 276 Left
5 0.4 2 1 2.6 Right
6 0.5 1.8 1.2 2.5 Right
7 299 02 28 001 Down
8

296 04 26 0.04 Down

316 279 28 02 021 Right
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Table 4. Testing data

No. h, (m) h; (m) h, (m) hg (M) Class Status
1 0.3001 0.6 0.6 0.2999 Right Correct
2 0.4001 0.71 0.49 0.1999 Right Correct
3 0.2401 04 2.6 2.76 Left Correct
4 0.1801 0.59 0.61 0.4199 Left Correct
5 0.0701 0.31 0.89 0.5299 Left Correct
6 0.0101 0.51 0.69 0.5899 Up Correct
7 0.0401 0.8 04 0.5599 Up Correct
8 0.5901 0.86 0.34 0.0099 Down Correct
9 0.5881 0.49 0.71 0.0119 Down Correct
10 0.4301 0.87 0.33 0.1699 Right Correct
40 0.0801 0.87 0.33 0.5199 Up Incorrect

RESULT AND DISCUSSION Case 2

This chapter discusses the results of the
modified LMKNCN algorithm in doing certain
tests. In the evasion direction avoidance tests,
the features used in training data [17] is first
discussed, as well as accuracy testing. Then, the
algorithm is tested in quadcopter flight plans
that must reach its target point with static and
dynamic obstacles in the way.

The LMKNCN classification features used
in this research is the dimensions of the obstacle
against the quadcopter’s position. The
dimensions feature data is processed into
deviance distance data. This feature data
consisted of 4 parameters, that of upper span
h,, left span h;, right span h,., and lower span
hg. The deviance distance data § consisted of 4
parameters, that of left, right, up and down
deviances. Table 2 shows the feature data used
in cluster training data, Table 3 shows the
obstacle training data, and Table 4 shows the
testing data, all of which resolves as correct.

The simulation tests used a computer with
Intel Core i3 CPU of 1.70 GHz and 4 Gb RAM.
The tests result in an accuracy of 97.5% (Table
4). The learning process between training and
testing data required a computation time of
0.142341 seconds.

Case 1l

In Case 1, the start point is in coordinate
(0.5,4,2) and the target point is in coordinate
(7.5,4,2). This case has 1 static obstacle in
coordinate (4,4.1,2), shown in top view in Fig
6 and side view in Fig 7.

In Case 2, there is 1 dynamic obstacle
moving up and down the positive z-axis. This
obstacle has an innate velocity of 0.005m/s.
The quadcopter is positioned at the start point
(0.5,4,2) and has the target point (7.5,4,2). The
dynamic obstacle has an initial coordinate
(4,4,1.6) shown in Fig 8 and Fig 9.

Case 3

In Case 3, the quadcopter is placed in the
start point (0.5,4,2) and its target point is
(7.5,4,2). There are 2 dynamic obstacles with
starting coordinates of (3.4,2.2,2.26) and
(5.2,6.41,1.88). The first obstacle has an innate
velocity of 0.02m/s, moving the the left
(positive y-axis). The second obstacle has an
innate velocity of 0.01 m/s, moving to the
right (negative y-axis) as shown in Fig 10 and
Fig 11.

Result Case 1

The obstacle is detected when the
quadcopter is in coordinate (2.8,4,2), in 4s.
The detected obstacle’s dimensions from the
guadcopter are h, = 0.4001, h; = 0.7, h, =
0.5and hy = 0.1999.

The closest training cluster data (Table 5) in
this case is in Cluster 8. The first closest data in
the cluster is the 12th data point. The centroids
are located in the 15th and the 16th, shown in
Table 6. The most efficient evasion direction is
to the right due to the 3 nearest neighbors to the
static obstacle training data in Cluster 8 (Table
7) showed the right class.



Result Case 2

The quadcopter detected the obstacle in 4s
in coordinate  (4,4.1,2). The detected
dimensions are h,, = 0.3101, h; = 0.6, h, =
0.6 and h; = 0.0399.

Table 8 showed that the closest cluster to the
obstacle training data is Cluster 8. The first
closest training data is the 11th data. The
centroids are located in the 12th and 6th data
(Table 9). The 3 nearest neighbors showed the
down class (Table 10), therefore the evasion
direction is to the bottom.

Result Case 3

The quadcopter detected the first obstacle in
4s in coordinate (2.3,4,2). In 13s, the
guadcopter detected the second obstacle in
coordinate (4,4,2). The first obstacle’s
dimensions are h,, = 0.5601, h; = 0.2, h,, =0
and hgz =0.0399. The second obstacle’s
dimensions are h, = 0.1808, h; =0, h, =
0.75and hy = 0.4192.

The closest cluster for the first obstacle is
Cluster 9, as shown in Table 11. The closest
cluster for the second obstacle is Cluster 1, as
shown in Table 14. The closest training data in
each cluster is the 8th for the first obstacle and
the 5th for the second obstacle. The centroids
for the first obstacle are the 7th and the 4th
(Table 12). The centroids for the second
obstacle are the 6th and the 7th (Table 15). For
the first obstacle, the most efficient evasion
direction is to the right, as shown in Table 13.
For the second obstacle, the chosen evasion
direction is to the left as shown in Table 16.

-or < 5
@ (b)

Fig 5. Case 1 top view (a) 9s (b) 17s

= ) /

(a) (b)
Fig 6. Case 1 side view (a) 9s (b) 17s
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Table 5. Nearest cluster training data for case 1

h h h h Euclid

) m) m) ) S Distance
05 06 06 01 8 0.1999

03 06 06 03 5 0.2001

05 09 03 01 9 0.316165
Table 6. Centroid data

Data h, h;, h, h; Euclid

Pairs (m) (m) (m) (m) Distance

12&15 045 0.68 052 0.15 0.076

12&16 046 0.72 0.48 0.14 0.0893
12&13 042 0.64 056 0.18 0.0894
12&14 043 0.64 056 0.16 0.0982

Table 7. Nearest static obstacle training data in
cluster 8 for case 1

h, (m) h;(m) h,(m) hy(m)  Class
0.4 064 056 0.2 Right
05 072 048 01 Right
052 0.8 0.4 008  Right
044 064 056 016  Right
047 064 056 013  Right

(@) (b)

(a) (b)
Fig 8. Case 2 side view (a) 9s (b) 17s

Table 8. Nearest cluster training data for Case 2

hu hl hr hd Euclid
m) m) m) m) " Distance
029 06 06 006 8 0.0261
017 06 06 017 5 0.191
006 0.6 06 029 2 0.356
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Table 9. Centroid data

Data h, h; h, h; Euclid
Pairs (m) (m) (m) (m) Distance

Table 11. Nearest cluster training data for case
3 first obstacle

11&12 03 06 06 0.05 0.0178
11&6 029 06 06 0.06 0.0343
11&5 028 0.6 0.6 0.07 0.0467
11&13 031 064 0.56 0.04 0.0568

Table 10. Nearest static obstacle training data
in cluster 8 for case 2

h h, h, hy

b Class
m @m (m (m
0.3 0.56 0.64 0.05 Down
0.3 0.64 0.56 0.05 Down
0.27 0.64 0.56 0.08 Down
0.26 0.64 0.56 0.09 Right
0.31 0.72 0.48 0.03 Down
L s B
'Y _ Y £
(a) (b)
L %
= -
(c) (d)
Fig 9. Case 3 top view (a) 9s (b) 13s (c) 23s
(d) 31s
s > = <
(a) (b)

© G
Fig 10. Case 3 Side View (a) 9s (b) 13s (c) 23s
(d) 31s

hu hl hr hd Euclid
m) m) m) m) O Distance
05 015 005 01 9 0.1106
05 01 01 01 8 0.165
05 005 015 01 7 0.2285
Table 12. Centroid data

Data h, h, h, hy Euclid
Pairs (m) (m) (m) (m) Distance
78 & 055 018 002 0045 0.0292
f & 058 0187 001 0022 00316
38 & 057 018 002 0025 00353
28 & 057 017 003 0031 0.0398

Table 13. Nearest right-moving dynamic
obstacle training data in cluster 9 for
case 3 first obstacle

h,(m) h,(m) h,(m) hg(m)  Class
056 019 001  0.04 Right
055 017 003 0.5 Right
0.6 049 001 0002  Down
059 017 003 001 Down
058 016 004  0.02 Down

Table 14. Nearest cluster training data for Case
3 second obstacle

h h h h Euclid
m) any ) m) O Distance
01 019 056 05 1 0.2887
03 019 056 03 4 0.3142
05 019 056 01 7 0.5235

Table 15. Centroid data

Data h, h, h, h; Euclid
Pairs (m) (m) (m) (m) Distance
5&6 004 007 067 055 0.2194
5&7 005 01 065 055 0.2317
5&1 002 005 07 058 0.2354
5&2 002 0.07 0.67 057 0.2445

Table 16. Nearest static obstacle training data
in Cluster 1 for Case 3 second obstacle

h, (m) h;(m) h,(m) hy(m) Class
0042 005 0.7 0558  Left
0048 0.1 065 0552  Left

0.06 0.15 0.6 0.54 Left
0.002 0.05 0.7 0.598 Up
0.008 0.1 0.65 0.592 Up




CONCLUSION

This research has been This research discussed
obstacle avoidance for quadcopter in a 3D
environment. The system is designed to resolve
efficient avoidance direction by minimizing
energy and distance needed to evade static and
dynamic obstacles. A modified Local Mean K-
Nearest Centroid Neighbor (LKMNCN)
algorithm is used in the system by splitting
training data into multiple clusters. The
guadcopter in this research used a proportional-
derivative controller to reach the desired
waypoints.

The training data in this research is divided
into cluster training data and obstacle training
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