

 Vol. 11, No. 3, Juli 2022

 ISSN 0216 – 0544

e-ISSN 2301– 6914

109

OBSTACLE AVOIDANCE IN QUADCOPTER NAVIGATION USING

MODIFIED LOCAL MEAN K-NEAREST CENTROID

NEIGHBOR METHOD

aHendy Prasetyo, bTrihastuti Agustinah

a, b, cDepartment of Electrical Engineering, Institut Teknologi Sepuluh Nopember (ITS)

Surabaya 60111, Indonesia

E-mail: hendyprasetyo3010@gmail.com, trihastuti@ee.its.ac.id

Abstract

Quadcopter is a type of Unmanned Aerial Vehicle (UAV) technology, characterized by

simple mechanical structure, ease of flying and good maneuvering. In its usage, the

quadcopter is required to evade obstacles in its path. Thus, an obstacle avoidance

system in a 3D space with both static and dynamic obstacles is. Avoidance direction is

determined by considering nearest distance based on the dimensions of the obstacle.

Due to limited battery capacity, the quadcopter also needs to consider energy efficiency

in obstacle avoidance. The obstacle’s properties and movement direction are also

needed in considering the correct avoidance direction. Using a modified Local Mean

K-Nearest Centroid Neighbor (LMKNCN) algorithm results in a 97.5% accuracy for

avoidance direction decision. The learning process between training data and testing

data yielded a computation duration of 0.142341 seconds. The simulations showed that

the quadcopter is able to avoid static and dynamic obstacles to reach its destination

without collisions.

Key words: Energy Efficient, Obstacle Avoidance, Machine Learning, Modified

LMKNCN, Movement Trends, Quadcopter Navigation.

INTRODUCTION

A quadcopter is a type of unmanned aerial

vehicle (UAV) with 4 rotors serving as lift and

propulsion. A quadcopter’s advantages

compared to other UAV configurations include

simple mechanical structure, ease of flying and

maneuvering. These advantages allow the

quadcopter to be used in many fields, such as

farming [1], surveillance [2], construction [3],

search and rescue [4], delivery [5], and such

others.

In doing its assigned tasks, a given

quadcopter must avoid many obstacles in its

path. Its avoidance system must be adaptable

towards both static and dynamic obstacles to

make sure the quadcopter is safe and

undamaged.

According to [6], avoidance direction

decision needs to consider energy usage and

distance due to limitations in the quadcopter’s

battery capacity. This research used K-Nearest

Neighbor (KNN) algorithm for avoidance,

using travel distance and minimum energy

usage. This method is simple and effective in

avoiding static obstacles of various dimensions

However, there are still a possibility that the

quadcopter hits a dynamic obstacle with certain

speed.

Dynamic obstacle avoidance mechanism by

predicting movement trends (static,

dynamically to the left or right) to determine the

robot’s linear speed is discussed in [7]. The

robot may avoid the obstacle by increasing and

decreasing speed, or outright stopping to wait

110 Jurnal Ilmiah KURSOR, Vol. 11, No. 3, Juli 2022, hal 109 - 118

for the obstacle to pass. This fuzzy logic-based

method was able to predict movement trends

and assist the robot in choosing the correct

speed to avoid the obstacle. The movement

trend prediction concept can be adapted

towards an avoidance system for dynamic

obstacles of varying speeds and directions.

Building upon [6], there is also a need for

predicting the obstacle’s movement trends to

alter the quadcopter’s movement direction in

addition to its linear speed, thus minimizing

evasion travel distance. However, running both

movement trend prediction and speed

adjustment burdened the KNN algorithm used

in [6], resulting in more errors and eventual

evasion failures. Local Mean K-Nearest

Centroid Neighbor (LMKNCN) algorithm, a

development from KNN, was proved by [8]-[9]

to have less classification errors than its

predecessor, thus its inclusion in the proposed

system.

The LMKNCN method was tested in [8]-[9]

to require a longer calculation method than

KNN, which may influence calculation time,

especially with high amount of training data.

Thus, the algorithm needs to be modified to

modify the algorithm to reduce the amount of

executed training data. Grouping training data

into a few clusters was proposed by [10]-[11],

with each group being represented by a single

data point, usually taken from the clusters’

midpoints. The results gained by [10]-[11]

showed that this method may reduce

computation time despite the large number of

training data involved.

From the previously discussed research, this

paper proposes an avoidance system using a

modified LMKNCN algorithm. The

modification involved clustering the training

data to reduce the amount of data processed by

the algorithm in a given time, thus reducing

computation time in the classification process.

With this modification, it is hoped that the

quadcopter will be able to avoid static and

dynamic obstacles with a fast, accurate

avoidance decision while also minimizing

distance and energy. The avoidance

classification system has five classes, that is

evading to the left, right, up, down, or stopping,

based on the obstacle’s movement trends and

dimensions between the quadcopter and the

obstacle.

MATERIAL AND METHODS

This chapter discusses the system’s

concepts. The quadcopter unit used in the

system is a Quanser Qdrone as seen in Fig 1.

The obstacles used will be static and dynamic,

while the avoidance system used the LMKNCN

method to determine evasion direction.

Fig 1. Quadcopter quanser qdrone

Table 1. Quanser qdrone parameters

Parameter Symbol Value

Mass (kg) m 1

Gravity (kg/ m2) g 9.81

Moment of inertia

on the 𝑋 axis

(kg.m2)

Jxx 0.03

Moment of inertia

on the 𝑌 axis

(kg.m2)

Jyy 0.03

Moment of inertia

on the 𝑍 axis

(kg.m2)

Jzz 0.04

Distance between

rotor and center of

mass (m)

l 0.2

Drag force d 3.13x10-5

Thrust force b 7.5x10-7

Bandwidth actuator

(rad/s)
𝜔 15

Thrust force

constant (N)
K 120

Quadcopter System
The Quanser Qdrone, a quadcopter designed

for outdoor research, was chosen for this

research. The quadcopter had a carbon fiber

frame for a reduced weight, contributing to

better maneuvering and less risk of catastrophic

collisions. The drone has 40 cm × 40 cm ×15

cm dimensions and is equipped with propeller

protectors.

Hendy P., & Trihastuti A., Obstacle Avoidance ... 111

Fig 2. System scheme

Fig 5. Quadcopter control system

𝑋̈ = (𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜑

+ 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑)
𝑈1

𝑚

𝑌̈ = (− 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜑

+ 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑)
𝑈1

𝑚

𝑍̈ = −𝑔 + (𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑)
𝑈1

𝑚

𝑝̇ =
𝐽𝑦𝑦 − 𝐽𝑧𝑧

𝐽𝑥𝑥

𝑞𝑟 +
𝑈2𝑙

𝐽𝑥𝑥

𝑞̇ =
𝐽𝑧𝑧 − 𝐽𝑥𝑥

𝐽𝑦𝑦

𝑝𝑟 +
𝑈3𝑙

𝐽𝑦𝑦

𝒓̇ =
𝑱

𝒙𝒙
− 𝑱

𝒚𝒚

𝑱
𝒛𝒛

𝒑𝒒 +
𝑼𝟒𝒅

𝑱
𝒛𝒛

The quadcopter’s system model [12] is

represented in (1), where 𝑋, 𝑌, 𝑍 is the

quadcopter’s position while 𝑝, 𝑞, 𝑟 is the roll,

pitch and yaw speed. The parameters used in

the drone are shown in Table 1 depending on

the type of drone. The system schema can be

seen in Fig 2.

Obstacle Detection

An obstacle may be detected at a minimum

distance of 1 meter to the quadcopter, which

may be static or dynamic. When an obstacle is

detected, direction detection is done to

determine its movement, (moving to the left,

right, up, down, or static).

After detecting an obstacle, the quadcopter

reads its dimensions ℎ𝑢, ℎ𝑙, ℎ𝑟, and ℎ𝑑 to

classify the obstacle using the modified

LMKNCN method. The classification results

will be turned into waypoints for the

quadcopter’s path, changing its direction from

the initial target and avoiding the obstacle [13].

Classification Method
This system used a modified Local Mean K-

Nearest Centroid Neighbor (LMKNCN)

algorithm to reduce the number of calculations

needing to be done. Once a dataset has been

chosen according to the detected obstacle, the

Target Point
Obstacle

Detection

Quadcopter

Control

Quadcopter

System

Obstacle Move

Capture

Direction

Classification

(Machine Learning)

Right Left Up Stop

Needed

Energy

Obstacle Dimension

towards Quadcopter

Deviation

Distance

Obstacle Move

Dataset

Obstacle

Avoidance

Mechanism

Down

(1)

𝑿(𝒕)

𝒀(𝒕)

𝒁(𝒕)

𝑿𝑻(𝒕)

𝒀𝑻(𝒕)

𝒁𝑻(𝒕)

𝑿̈, 𝒀̈, 𝒁̈

∫

𝝋𝒅𝒆𝒔(𝒕)

𝜽𝒅𝒆𝒔(𝒕)

𝝍𝒅𝒆𝒔(𝒕)

𝒖𝒑𝒊𝒕𝒄𝒉

𝒖𝒚𝒂𝒘

𝒖𝒂𝒍𝒕

Position

Control
Attitude

Control

∫

𝒑̇(𝒕), 𝒒̇(𝒕), 𝒓̇(𝒕)

Motor

Dynamics

Quadcopter

Dynamics 𝒖𝒓𝒐𝒍𝒍

𝑼𝟏

𝑼𝟐

𝑼𝟑
𝑼𝟒

112 Jurnal Ilmiah KURSOR Vol. 11, No. 3, Juli 2022, hal 109 - 118

next step is grouping the data into clusters, each

with a cluster point determined using the

following equation:

𝐶𝑝𝑖 =
1

𝑘
∑ 𝑥𝑗

𝑘

𝑗=1

 (2)

where 𝐶𝑝𝑖 is the i-th cluster point, 𝑘 is the

number of data points, and 𝑥𝑗 is a data point.

In the testing data process, the first step is

finding the nearest neighbor between new data

and some cluster points. To calculate the

nearest neighbor distance the following

equation was used:

𝑑(𝑥, 𝐶𝑝) = √∑(𝑥𝑖 − 𝐶𝑝𝑖)2

𝑛

𝑖=1

 (3)

where 𝑥 is new data and 𝐶𝑝𝑖 is the i-th cluster

point

After finding the nearest cluster, the next

step is finding the nearest neighbor between the

new data and data inside the cluster using

LMKNCN [8]-[9]. The steps are as follows:

a) Find the nearest neighbor 𝑞1 between testing

data 𝑥 and training data in cluster 𝑗 𝑎𝑗
𝐶𝑝

using an Euclidean distance equation shown

in (4).

𝑑(𝑥, 𝑎𝑗
𝐶𝑝

) = √∑(𝑥𝑖 − 𝑎𝑗𝑖
𝐶𝑝

)2

𝑛

𝑖=1

 (4)

b) Find the nearest centroid neighbor 𝐶𝑘

between testing data and each centroid data.

The new centroid data is gleaned from the

midpoint between a nearest neighbor 𝑞1 to

the k-th neighbor.

𝐶𝑘 =
1

𝑘
∑ 𝑞𝑗

𝑘

𝑗=1

 (5)

After finding the nearest centroid neighbor,

the next step is finding k nearest neighbors.

c) Calculating local average centroid vector

𝑢𝑖𝑘
𝑁𝐶𝑁 from each class 𝑐𝑖.

𝑢𝑖𝑘
𝑁𝐶𝑁 =

1

𝑘
∑ 𝑥𝑖𝑗

𝑁𝐶𝑁

𝑘

𝑗=1

 (6)

where 𝑥𝑖𝑗
𝑁𝐶𝑁 is the training data for each

class 𝑐𝑖.

d) Finding the distance 𝑑(𝑥, 𝑢𝑖𝑘
𝑁𝐶𝑁) between 𝑥

and the local average centroid vector 𝑢𝑖𝑘
𝑁𝐶𝑁

using (7).

𝑑(𝑥, 𝑢𝑖𝑘
𝑁𝐶𝑁) = √∑(𝑥 − 𝑢𝑖𝑘

𝑁𝐶𝑁)2

𝑛

𝑘=1

 (7)

e) Finding testing data 𝑥 into class 𝑐, having

the nearest distance between local average

centroid vector 𝑢𝑖𝑗
𝑁𝐶𝑁 and testing data 𝑥 as

(8).

𝑐 = arg min
𝑐𝑖

𝑑(𝑥, 𝑢𝑖𝑗
𝑁𝐶𝑁) (8)

Deviance Distance
The obstacle will be detected by the

quadcopter at a distance of 1 meter. The

quadcopter will record the obstacle’s

dimensions (ℎ𝑢, ℎ𝑙, ℎ𝑟, ℎ𝑑) against the

intersection between the quadcopter and the

target point.

Fig 3 illustrates how a quadcopter would

read each deviance distance, with a side view in

Fig 4 (a) and a top view in Fig 4 (b). Each

deviance distance (𝛿𝑙, 𝛿𝑟, 𝛿𝑢, 𝛿𝑑) will be

calculated using (9).

𝜹𝒊 = 𝐭𝐚𝐧 𝜽𝒊 . 𝒅𝒊

𝜃𝑖 = 𝑡𝑎𝑛−1 (
ℎ𝑖 + 𝑡

𝑑𝑖
)

(9)

where 𝛿𝑖 is a deviance distance 𝑖, 𝜃𝑖 is the

deviance angle 𝑖, ℎ𝑖 is obstacle dimension 𝑖, 𝑡
is the safe distance and 𝑑𝑜 is the distance

between the obstacle and the quadcopter.

Energy
Alongside considering deviance distance,

the quadcopter must also consider energy [14].

In this case, there are two energy types [15].

Kinetic energy happens where the quadcopter

moves without any altitude changes, whereas

potential energy happens where the quadcopter

changed altitude. Calculating kinetic energy

may be done using (10).

∆𝐸𝑘 =
1

2
𝑚𝑉2 (10)

where 𝑚 is the quadcopter’s mass (𝑘𝑔) and 𝑉

is its velocity (𝑚/𝑠). Assume that there is no

energy loss from the quadcopter changing

altitudes. Calculating potential energy may be

done using (11).

∆𝐸𝑝 = 𝑚. 𝑔. ∆ℎ (11)

where 𝑚 is the mass of the quadcopter, 𝑔 is

gravity and ∆ℎ is the height difference between

the quadcopter’s and the avoidance point’s

coordinates.

Hendy P., & Trihastuti A., Obstacle Avoidance ... 113

𝛥𝐸𝑅,𝑖 is the sum of energy needed by the

quadcopter to move between its initial

coordinates (𝑋𝑅 , 𝑌𝑅 , 𝑍𝑅) to the avoidance

point’s coordinates (𝑋𝐾 , 𝑌𝐾 , 𝑍𝐾). The needed

energy sum 𝛥𝐸𝑅,𝑖 is defined as:

∆𝐸𝑖,𝑗 = ∆𝐸𝑝 + ∆𝐸𝑘 (12)

where ∆𝐸𝑝 is the potential energy and ∆𝐸𝑘 is

the kinetic energy of the quadcopter.

Evading in different directions require

different amounts of energy needed. Evading in

lateral directions (left or right) results in

potential energy ∆𝐸𝑝 being zero due to no

changes in altitude. However, when the

quadcopter evades in vertical directions (up or

down), the altitude changes mean the presence

of potential energy ∆𝐸𝑝.

Quadcopter Control
This research used a proportional-derivative

(PD) controller to control the quadcopter’s

movements. The controller’s inner loop is

devoted to attitude control, while its outer loop

is devoted to position control [16]. The

quadcopter control system is illustrated in Fig.

5.

From the tuning experiments, the

proportional-derivative control parameters

used in this research are as follows:

𝑘𝑝,𝑋 = 5, 𝑘𝑝,𝑌 = 5 , 𝑘𝑝,𝑍 = 20

 𝑘𝑑,𝑋 = 5, 𝑘𝑑,𝑌 = 5 , 𝑘𝑑,𝑍 = 10

𝑘𝑝,𝜙 = 3000 , 𝑘𝑝,𝜃 = 3000, 𝑘𝑝,𝜓 = 3000

𝑘𝑑,𝜙 = 300 , 𝑘𝑑,𝜃 = 300, 𝑘𝑑,𝜓 = 300

Fig 3. Deviance distance illustration

Explanation:

a : Deviance Up

b : Deviance Left

c : Deviance Right

d : Deviance Down

(a)

(b)

Fig 4. Deviance distance illustration (a) Side

view (b) Top view

Table 2. Cluster training data

No.
𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)
Cluster

1 0.5 0.75 2.25 2.5 1

2 0.5 1.5 1.5 2.5 2

3 0.5 2.25 0.75 2.5 3

4 1.5 0.75 2.25 1.5 4

5 1.5 1.5 1.5 1.5 5

6 1.5 2.25 0.75 1.5 6

7 2.5 0.75 2.25 0.5 7

8 2.5 1.5 1.5 0.5 8

9 2.5 2.25 0.75 0.5 9

Table 3. Obstacle training data

No.
ℎ𝑢

(𝑚)

ℎ𝑙

(𝑚)

ℎ𝑟

(𝑚)

ℎ𝑑

(𝑚)
Class

1 0.01 0.2 2.8 2.99 Up

2 0.04 0.4 2.6 2.96 Down

3 0.21 0.2 2.8 2.79 Left

4 0.24 0.4 2.6 2.76 Left

5 0.4 2 1 2.6 Right

6 0.5 1.8 1.2 2.5 Right

7 2.99 0.2 2.8 0.01 Down

8 2.96 0.4 2.6 0.04 Down

: : : : : :

316 2.79 2.8 0.2 0.21 Right

114 Jurnal Ilmiah KURSOR, Vol. 11, No. 3, Juli 2022, hal 109 - 118

Table 4. Testing data

No. ℎ𝑢 (𝑚) ℎ𝑙 (𝑚) ℎ𝑟 (𝑚) ℎ𝑑 (𝑚) Class Status

1 0.3001 0.6 0.6 0.2999 Right Correct

2 0.4001 0.71 0.49 0.1999 Right Correct

3 0.2401 0.4 2.6 2.76 Left Correct

4 0.1801 0.59 0.61 0.4199 Left Correct

5 0.0701 0.31 0.89 0.5299 Left Correct

6 0.0101 0.51 0.69 0.5899 Up Correct

7 0.0401 0.8 0.4 0.5599 Up Correct

8 0.5901 0.86 0.34 0.0099 Down Correct

9 0.5881 0.49 0.71 0.0119 Down Correct

10 0.4301 0.87 0.33 0.1699 Right Correct

: : : : : : :

40 0.0801 0.87 0.33 0.5199 Up Incorrect

RESULT AND DISCUSSION

This chapter discusses the results of the

modified LMKNCN algorithm in doing certain

tests. In the evasion direction avoidance tests,

the features used in training data [17] is first

discussed, as well as accuracy testing. Then, the

algorithm is tested in quadcopter flight plans

that must reach its target point with static and

dynamic obstacles in the way.

The LMKNCN classification features used

in this research is the dimensions of the obstacle

against the quadcopter’s position. The

dimensions feature data is processed into

deviance distance data. This feature data

consisted of 4 parameters, that of upper span

ℎ𝑢, left span ℎ𝑙, right span ℎ𝑟, and lower span

ℎ𝑑. The deviance distance data 𝛿 consisted of 4

parameters, that of left, right, up and down

deviances. Table 2 shows the feature data used

in cluster training data, Table 3 shows the

obstacle training data, and Table 4 shows the

testing data, all of which resolves as correct.

The simulation tests used a computer with

Intel Core i3 CPU of 1.70 GHz and 4 Gb RAM.

The tests result in an accuracy of 97.5% (Table

4). The learning process between training and

testing data required a computation time of

0.142341 seconds.

Case 1
In Case 1, the start point is in coordinate

(0.5,4,2) and the target point is in coordinate
(7.5,4,2). This case has 1 static obstacle in

coordinate (4,4.1,2), shown in top view in Fig

6 and side view in Fig 7.

Case 2
In Case 2, there is 1 dynamic obstacle

moving up and down the positive z-axis. This

obstacle has an innate velocity of 0.005𝑚/𝑠.

The quadcopter is positioned at the start point

(0.5,4,2) and has the target point (7.5,4,2). The

dynamic obstacle has an initial coordinate
(4, 4, 1.6) shown in Fig 8 and Fig 9.

Case 3
In Case 3, the quadcopter is placed in the

start point (0.5,4,2) and its target point is
(7.5,4,2). There are 2 dynamic obstacles with

starting coordinates of (3.4, 2.2, 2.26) and

(5.2,6.41,1.88). The first obstacle has an innate

velocity of 0.02 𝑚/𝑠, moving the the left

(positive y-axis). The second obstacle has an

innate velocity of 0.01 𝑚/𝑠, moving to the

right (negative y-axis) as shown in Fig 10 and

Fig 11.

Result Case 1
The obstacle is detected when the

quadcopter is in coordinate (2.8, 4, 2), in 4𝑠.

The detected obstacle’s dimensions from the

quadcopter are hu = 0.4001, ℎ𝑙 = 0.7, ℎ𝑟 =
0.5 and ℎ𝑑 = 0.1999.

The closest training cluster data (Table 5) in

this case is in Cluster 8. The first closest data in

the cluster is the 12th data point. The centroids

are located in the 15th and the 16th, shown in

Table 6. The most efficient evasion direction is

to the right due to the 3 nearest neighbors to the

static obstacle training data in Cluster 8 (Table

7) showed the right class.

Hendy P., & Trihastuti A., Obstacle Avoidance ... 115

Result Case 2
The quadcopter detected the obstacle in 4𝑠

in coordinate (4, 4.1, 2). The detected

dimensions are ℎ𝑢 = 0.3101, ℎ𝑙 = 0.6, ℎ𝑟 =
0.6 and ℎ𝑑 = 0.0399.

Table 8 showed that the closest cluster to the

obstacle training data is Cluster 8. The first

closest training data is the 11th data. The

centroids are located in the 12th and 6th data

(Table 9). The 3 nearest neighbors showed the

down class (Table 10), therefore the evasion

direction is to the bottom.

Result Case 3
The quadcopter detected the first obstacle in

4𝑠 in coordinate (2.3, 4, 2). In 13𝑠, the

quadcopter detected the second obstacle in

coordinate (4, 4, 2). The first obstacle’s

dimensions are ℎ𝑢 = 0.5601, ℎ𝑙 = 0.2, ℎ𝑟 = 0

and ℎ𝑑 = 0.0399. The second obstacle’s

dimensions are ℎ𝑢 = 0.1808, ℎ𝑙 = 0, ℎ𝑟 =
0.75 and ℎ𝑑 = 0.4192.

The closest cluster for the first obstacle is

Cluster 9, as shown in Table 11. The closest

cluster for the second obstacle is Cluster 1, as

shown in Table 14. The closest training data in

each cluster is the 8th for the first obstacle and

the 5th for the second obstacle. The centroids

for the first obstacle are the 7th and the 4th

(Table 12). The centroids for the second

obstacle are the 6th and the 7th (Table 15). For

the first obstacle, the most efficient evasion

direction is to the right, as shown in Table 13.

For the second obstacle, the chosen evasion

direction is to the left as shown in Table 16.

(a) (b)

Fig 5. Case 1 top view (a) 9s (b) 17s

(a) (b)

Fig 6. Case 1 side view (a) 9s (b) 17s

Table 5. Nearest cluster training data for case 1

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)
Cluster

Euclid

Distance

0.5 0.6 0.6 0.1 8 0.1999

0.3 0.6 0.6 0.3 5 0.2001

0.5 0.9 0.3 0.1 9 0.316165

Table 6. Centroid data

Data

Pairs
𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)

Euclid

Distance

12&15 0.45 0.68 0.52 0.15 0.076

12&16 0.46 0.72 0.48 0.14 0.0893

12&13 0.42 0.64 0.56 0.18 0.0894

12&14 0.43 0.64 0.56 0.16 0.0982

Table 7. Nearest static obstacle training data in

cluster 8 for case 1

𝒉𝒖 (𝒎) 𝒉𝒍 (𝒎) 𝒉𝒓 (𝒎) 𝒉𝒅 (𝒎) Class

0.4 0.64 0.56 0.2 Right

0.5 0.72 0.48 0.1 Right

0.52 0.8 0.4 0.08 Right

0.44 0.64 0.56 0.16 Right

0.47 0.64 0.56 0.13 Right

(a) (b)

Fig 7. Case 2 top view (a) 9s (b) 17s

(a) (b)

Fig 8. Case 2 side view (a) 9s (b) 17s

Table 8. Nearest cluster training data for Case 2

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)
Cluster

Euclid

Distance

0.29 0.6 0.6 0.06 8 0.0261

0.17 0.6 0.6 0.17 5 0.191

0.06 0.6 0.6 0.29 2 0.356

116 Jurnal Ilmiah KURSOR Vol. 11, No. 3, Juli 2022, hal 109 - 118

Table 9. Centroid data

Data

Pairs

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)

Euclid

Distance

11 & 12 0.3 0.6 0.6 0.05 0.0178

11 & 6 0.29 0.6 0.6 0.06 0.0343

11 & 5 0.28 0.6 0.6 0.07 0.0467

11 & 13 0.31 0.64 0.56 0.04 0.0568

Table 10. Nearest static obstacle training data

in cluster 8 for case 2

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)
Class

0.3 0.56 0.64 0.05 Down

0.3 0.64 0.56 0.05 Down

0.27 0.64 0.56 0.08 Down

0.26 0.64 0.56 0.09 Right

0.31 0.72 0.48 0.03 Down

(a) (b)

(c) (d)

Fig 9. Case 3 top view (a) 9s (b) 13s (c) 23s

(d) 31s

(a) (b)

(c) (d)

Fig 10. Case 3 Side View (a) 9s (b) 13s (c) 23s

(d) 31s

Table 11. Nearest cluster training data for case

3 first obstacle

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)
Cluster

Euclid

Distance

0.5 0.15 0.05 0.1 9 0.1106

0.5 0.1 0.1 0.1 8 0.165

0.5 0.05 0.15 0.1 7 0.2285

Table 12. Centroid data

Data

Pairs

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)

Euclid

Distance

8 &

7
0.55 0.18 0.02 0.045 0.0292

8 &

4
0.58 0.187 0.01 0.022 0.0316

8 &

3
0.57 0.18 0.02 0.025 0.0353

8 &

2
0.57 0.17 0.03 0.031 0.0398

Table 13. Nearest right-moving dynamic

obstacle training data in cluster 9 for

case 3 first obstacle

𝒉𝒖 (𝒎) 𝒉𝒍 (𝒎) 𝒉𝒓 (𝒎) 𝒉𝒅 (𝒎) Class

0.56 0.19 0.01 0.04 Right

0.55 0.17 0.03 0.05 Right

0.6 0.19 0.01 0.002 Down

0.59 0.17 0.03 0.01 Down

0.58 0.16 0.04 0.02 Down

Table 14. Nearest cluster training data for Case

3 second obstacle

𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)
Cluster

Euclid

Distance

0.1 0.19 0.56 0.5 1 0.2887

0.3 0.19 0.56 0.3 4 0.3142

0.5 0.19 0.56 0.1 7 0.5235

Table 15. Centroid data

Data

Pairs
𝒉𝒖

(𝒎)

𝒉𝒍

(𝒎)

𝒉𝒓

(𝒎)

𝒉𝒅

(𝒎)

Euclid

Distance

5 & 6 0.04 0.07 0.67 0.55 0.2194

5 & 7 0.05 0.1 0.65 0.55 0.2317

5 & 1 0.02 0.05 0.7 0.58 0.2354

5 & 2 0.02 0.07 0.67 0.57 0.2445

Table 16. Nearest static obstacle training data

in Cluster 1 for Case 3 second obstacle

𝒉𝒖 (𝒎) 𝒉𝒍 (𝒎) 𝒉𝒓 (𝒎) 𝒉𝒅 (𝒎) Class

0.042 0.05 0.7 0.558 Left

0.048 0.1 0.65 0.552 Left

0.06 0.15 0.6 0.54 Left

0.002 0.05 0.7 0.598 Up

0.008 0.1 0.65 0.592 Up

Hendy P., & Trihastuti A., Obstacle Avoidance ... 117

CONCLUSION

This research has been This research discussed

obstacle avoidance for quadcopter in a 3D

environment. The system is designed to resolve

efficient avoidance direction by minimizing

energy and distance needed to evade static and

dynamic obstacles. A modified Local Mean K-

Nearest Centroid Neighbor (LKMNCN)

algorithm is used in the system by splitting

training data into multiple clusters. The

quadcopter in this research used a proportional-

derivative controller to reach the desired

waypoints.

The training data in this research is divided

into cluster training data and obstacle training

data. The obstacle training data is divided into

5 parts corresponding to the obstacle’s

characteristics. These include static obstacle

data, up-moving, down-moving, right-moving,

and left moving data. The nearest neighbor

number 𝑘 is set at 3.

The simulation results show that the

designed system resolves an avoidance decision

accuracy of 97.5%. Learning time between

training and testing data required a measured

computation time of 0.142341 seconds. With

this system, the quadcopter was able to avoid

static and dynamic obstacles of varying

velocities.

REFERENCES

[1] B. H. Y. Alsalam, K. Morton, D.

Campbell, and F. Gonzalez,

“Autonomous UAV with Vision Based

On-Board Decision Making for Remote

Sensing and Precision Agriculture,” in

2017 IEEE Aerospace Conference, Big

Sky, MT, USA, Mar. 2017, pp. 1–12.

doi: 10.1109/AERO.2017.7943593.

[2] D. Popescu, L. Ichim, and T. Caramihale,

“Flood Areas Detection based on UAV

Surveillance System,” in 2015 19th

International Conference on System

Theory, Control and Computing

(ICSTCC), Cheile Gradistei, Romania,

Oct. 2015, pp. 753–758. doi:

10.1109/ICSTCC.2015.7321384.

[3] W. Wang, Y. Chen, and X. Zhang, “A

Rural Constuction Land Extraction

Algorithm for UAV Images based on

Improved Gaussian Mixture Model and

Markov Random Field,” p. 4.

[4] M. B. Bejiga, A. Zeggada, and F.

Melgani, “Convolutional Neural

Networks for Near Real-Time Object

Detection from UAV Imagery in

Avalanche Search and Rescue

Operations,” in 2016 IEEE International

Geoscience and Remote Sensing

Symposium (IGARSS), Beijing, China,

Jul. 2016, pp. 693–696. doi:

10.1109/IGARSS.2016.7729174.

[5] E. Camci and E. Kayacan, “Waitress

Quadcopter Explores how to Serve

Drinks by Reinforcement Learning,” in

2016 IEEE Region 10 Conference

(TENCON), Singapore, Nov. 2016, pp.

28–32. doi:

10.1109/TENCON.2016.7847952.

[6] I. S. Asti, T. Agustinah, and A. Santoso,

“Obstacle Avoidance with Energy

Efficiency and Distance Deviation Using

KNN Algorithm for Quadcopter,” in

2020 International Seminar on

Intelligent Technology and Its

Applications (ISITIA), Surabaya,

Indonesia, Jul. 2020, pp. 285–291. doi:

10.1109/ISITIA49792.2020.9163788.\

[7] Y. Liu, D. Chen, and S. Zhang, “Obstacle

Avoidance Method based on the

Movement Trend of Dynamic

Obstacles,” in 2018 3rd International

Conference on Control and Robotics

Engineering (ICCRE), Nagoya, Apr.

2018, pp. 45–50. doi:

10.1109/ICCRE.2018.8376431.

[8] J. Gou, Z. Yi, L. Du, and T. Xiong, “A

Local Mean-Based K-Nearest Centroid

Neighbor Classifier,” Comput. J., vol.

55, no. 9, pp. 1058–1071, Sep. 2012, doi:

10.1093/comjnl/bxr131.

[9] S. Damavandinejadmonfared, “Kernel

Entropy Component Analysis using Local

Mean-based K-Nearest Centroid

Neighbour (LMKNCN) as a Classifier for

Face Recognition in Video Surveillance

Camera Systems,” in 2012 IEEE 8th

International Conference on Intelligent

Computer Communication and

Processing, Cluj-Napoca, Cluj, Romania,

118 Jurnal Ilmiah KURSOR Vol. 11, No. 3, Juli 2022, hal 109 - 118

Aug. 2012, pp. 253–256. doi:

10.1109/ICCP.2012.6356195.

[10] D. Pan, Z. Zhao, L. Zhang, and C. Tang,

“Recursive Clustering K-Nearest

Neighbors Algorithm and the Application

in the Classification of Power Quality

Disturbances,” in 2017 IEEE Conference

on Energy Internet and Energy System

Integration (EI2), Beijing, Nov. 2017, pp.

1–5. doi: 10.1109/EI2.2017.8245652.

[11] D. Zhang, B. Xu, and J. Wood, “Predict

Failures in Production Lines: A Two-Stage

Approach with Clustering and Supervised

Learning,” in 2016 IEEE International

Conference on Big Data (Big Data),

Washington DC,USA, Dec. 2016, pp.

2070–2074. doi:

10.1109/BigData.2016.7840832.

[12] T. Agustinah, F. Isdaryani, and M. Nuh,

“Tracking Control of Quadrotor Using

Static Output Feedback with Modified

Command-Generator Tracker,” Int. Rev.

Autom. Control IREACO, vol. 9, no. 4, p.

242, Jul. 2016, doi:

10.15866/ireaco.v9i4.9431.

[13] K. Y. Chee and Z. W. Zhong, “Control,

Navigation and Collision Avoidance for an

Unmanned Aerial Vehicle,” Sens.

Actuators Phys., vol. 190, pp. 66–76, Feb.

2013, doi: 10.1016/j.sna.2012.11.017.

[14] H. V. Abeywickrama, B. A.

Jayawickrama, Y. He, and E. Dutkiewicz,

“Algorithm for Energy Efficient Inter-

UAV Collision Avoidance,” in 2017 17th

International Symposium on

Communications and Information

Technologies (ISCIT), Cairns, Australia,

Sep. 2017, pp. 1–5. doi:

10.1109/ISCIT.2017.8261200.

[15] J. Viegas, Kinetic and Potential Energy:

Understanding Changes within Physical

Systems. New York: Rosen Pub. Group,

2005.

[16] N. Michael, D. Mellinger, Q. Lindsey, and

V. Kumar, “The GRASP Multiple Micro-

UAV Testbed,” IEEE Robot. Autom.

Mag., vol. 17, no. 3, pp. 56–65, Sep. 2010,

doi: 10.1109/MRA.2010.937855.

[17] M. Stamp, Introduction to Machine

Learning with Applications in Information

Security. Boca Raton London New York:

CRC Press, Taylor & Francis Group, 2018.

.

