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Abstract 

 
Quadcopter is a type of Unmanned Aerial Vehicle (UAV) technology, characterized by 

simple mechanical structure, ease of flying and good maneuvering. In its usage, the 

quadcopter is required to evade obstacles in its path. Thus, an obstacle avoidance 

system in a 3D space with both static and dynamic obstacles is. Avoidance direction is 

determined by considering nearest distance based on the dimensions of the obstacle. 

Due to limited battery capacity, the quadcopter also needs to consider energy efficiency 

in obstacle avoidance. The obstacle’s properties and movement direction are also 

needed in considering the correct avoidance direction. Using a modified Local Mean 

K-Nearest Centroid Neighbor (LMKNCN) algorithm results in a 97.5% accuracy for 

avoidance direction decision. The learning process between training data and testing 

data yielded a computation duration of 0.142341 seconds. The simulations showed that 

the quadcopter is able to avoid static and dynamic obstacles to reach its destination 

without collisions.          

Key words: Energy Efficient, Obstacle Avoidance, Machine Learning, Modified 

LMKNCN, Movement Trends, Quadcopter Navigation. 

 

 

INTRODUCTION 

A quadcopter is a type of unmanned aerial 

vehicle (UAV) with 4 rotors serving as lift and 

propulsion. A quadcopter’s advantages 

compared to other UAV configurations include 

simple mechanical structure, ease of flying and 

maneuvering. These advantages allow the 

quadcopter to be used in many fields, such as 

farming [1], surveillance [2], construction [3], 

search and rescue [4], delivery [5], and such 

others. 

In doing its assigned tasks, a given 

quadcopter must avoid many obstacles in its 

path. Its avoidance system must be adaptable 

towards both static and dynamic obstacles to 

make sure the quadcopter is safe and 

undamaged. 

According to [6], avoidance direction 

decision needs to consider energy usage and 

distance due to limitations in the quadcopter’s 

battery capacity. This research used K-Nearest 

Neighbor (KNN) algorithm for avoidance, 

using travel distance and minimum energy 

usage. This method is simple and effective in 

avoiding static obstacles of various dimensions 

However, there are still a possibility that the 

quadcopter hits a dynamic obstacle with certain 

speed. 

Dynamic obstacle avoidance mechanism by 

predicting movement trends (static, 

dynamically to the left or right) to determine the 

robot’s linear speed is discussed in [7]. The 

robot may avoid the obstacle by increasing and 

decreasing speed, or outright stopping to wait 
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for the obstacle to pass. This fuzzy logic-based 

method was able to predict movement trends 

and assist the robot in choosing the correct 

speed to avoid the obstacle. The movement 

trend prediction concept can be adapted 

towards an avoidance system for dynamic 

obstacles of varying speeds and directions. 

Building upon [6], there is also a need for 

predicting the obstacle’s movement trends to 

alter the quadcopter’s movement direction in 

addition to its linear speed, thus minimizing 

evasion travel distance. However, running both 

movement trend prediction and speed 

adjustment burdened the KNN algorithm used 

in [6], resulting in more errors and eventual 

evasion failures. Local Mean K-Nearest 

Centroid Neighbor (LMKNCN) algorithm, a 

development from KNN, was proved by [8]-[9] 

to have less classification errors than its 

predecessor, thus its inclusion in the proposed 

system. 

The LMKNCN method was tested in [8]-[9] 

to require a longer calculation method than 

KNN, which may influence calculation time, 

especially with high amount of training data. 

Thus, the algorithm needs to be modified to 

modify the algorithm to reduce the amount of 

executed training data. Grouping training data 

into a few clusters was proposed by [10]-[11], 

with each group being represented by a single 

data point, usually taken from the clusters’ 

midpoints. The results gained by [10]-[11] 

showed that this method may reduce 

computation time despite the large number of 

training data involved. 

From the previously discussed research, this 

paper proposes an avoidance system using a 

modified LMKNCN algorithm. The 

modification involved clustering the training 

data to reduce the amount of data processed by 

the algorithm in a given time, thus reducing 

computation time in the classification process. 

With this modification, it is hoped that the 

quadcopter will be able to avoid static and 

dynamic obstacles with a fast, accurate 

avoidance decision while also minimizing 

distance and energy. The avoidance 

classification system has five classes, that is 

evading to the left, right, up, down, or stopping, 

based on the obstacle’s movement trends and 

dimensions between the quadcopter and the 

obstacle.   

 

 

MATERIAL AND METHODS 

This chapter discusses the system’s 

concepts. The quadcopter unit used in the 

system is a Quanser Qdrone as seen in Fig 1. 

The obstacles used will be static and dynamic, 

while the avoidance system used the LMKNCN 

method to determine evasion direction. 

 

Fig 1. Quadcopter quanser qdrone 

Table 1. Quanser qdrone parameters 

Parameter Symbol Value 

Mass (kg) m 1 

Gravity (kg/ m2) g 9.81 

Moment of inertia 

on the 𝑋 axis 

(kg.m2) 

Jxx 0.03 

Moment of inertia 

on the 𝑌 axis 

(kg.m2) 

Jyy 0.03 

Moment of inertia 

on the 𝑍 axis 

(kg.m2) 

Jzz 0.04 

Distance between 

rotor and center of 

mass (m) 

l 0.2 

Drag force d 3.13x10-5 

Thrust force b 7.5x10-7 

Bandwidth actuator 

(rad/s) 
𝜔 15 

Thrust force 

constant (N) 
K 120 

 

Quadcopter System 
The Quanser Qdrone, a quadcopter designed 

for outdoor research, was chosen for this 

research. The quadcopter had a carbon fiber 

frame for a reduced weight, contributing to 

better maneuvering and less risk of catastrophic 

collisions. The drone has 40 cm × 40 cm ×15 

cm dimensions and is equipped with propeller 

protectors.
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Fig 2. System scheme 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Quadcopter control system 

 

𝑋̈ = (𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜑 

+ 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑)
𝑈1

𝑚
 

𝑌̈ = (− 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜑 

+ 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑)
𝑈1

𝑚
 

𝑍̈ = −𝑔 + (𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑)
𝑈1

𝑚
 

𝑝̇ =
𝐽𝑦𝑦 − 𝐽𝑧𝑧

𝐽𝑥𝑥

𝑞𝑟 +
𝑈2𝑙

𝐽𝑥𝑥

 

𝑞̇ =
𝐽𝑧𝑧 − 𝐽𝑥𝑥

𝐽𝑦𝑦

𝑝𝑟 +
𝑈3𝑙

𝐽𝑦𝑦

 

𝒓̇ =
𝑱

𝒙𝒙
− 𝑱

𝒚𝒚

𝑱
𝒛𝒛

𝒑𝒒 +
𝑼𝟒𝒅

𝑱
𝒛𝒛

 

 

The quadcopter’s system model [12] is 

represented in (1), where 𝑋, 𝑌, 𝑍 is the 

quadcopter’s position while 𝑝, 𝑞, 𝑟 is the roll, 

pitch and yaw speed. The parameters used in 

the drone are shown in Table 1 depending on 

the type of drone. The system schema can be 

seen in Fig 2.  

Obstacle Detection 

An obstacle may be detected at a minimum 

distance of 1 meter to the quadcopter, which 

may be static or dynamic. When an obstacle is 

detected, direction detection is done to 

determine its movement, (moving to the left, 

right, up, down, or static). 

After detecting an obstacle, the quadcopter 

reads its dimensions ℎ𝑢, ℎ𝑙, ℎ𝑟, and ℎ𝑑 to 

classify the obstacle using the modified 

LMKNCN method. The classification results 

will be turned into waypoints for the 

quadcopter’s path, changing its direction from 

the initial target and avoiding the obstacle [13]. 

Classification Method  
This system used a modified Local Mean K-

Nearest Centroid Neighbor (LMKNCN) 

algorithm to reduce the number of calculations 

needing to be done. Once a dataset has been 

chosen according to the detected obstacle, the 

Target Point 
Obstacle 

Detection 

Quadcopter 

Control 

Quadcopter 

System 

Obstacle Move 

Capture 

Direction 

Classification 

(Machine Learning) 

Right Left Up Stop 

Needed 

Energy 

Obstacle Dimension 

towards Quadcopter 

Deviation 

Distance 

Obstacle Move 

Dataset 

Obstacle 

Avoidance 

Mechanism 

Down 

(1) 

𝑿(𝒕) 

𝒀(𝒕) 

𝒁(𝒕) 

𝑿𝑻(𝒕) 

𝒀𝑻(𝒕) 

𝒁𝑻(𝒕) 

𝑿̈, 𝒀̈, 𝒁̈ 
 

∫  

𝝋𝒅𝒆𝒔(𝒕) 

𝜽𝒅𝒆𝒔(𝒕) 

𝝍𝒅𝒆𝒔(𝒕) 

𝒖𝒑𝒊𝒕𝒄𝒉 

𝒖𝒚𝒂𝒘 

 

𝒖𝒂𝒍𝒕 
 

Position 

Control 
Attitude 

Control  

∫  

𝒑̇(𝒕), 𝒒̇(𝒕), 𝒓̇(𝒕) 
 

 

Motor 

Dynamics 

 

Quadcopter 

Dynamics 𝒖𝒓𝒐𝒍𝒍 

𝑼𝟏 

𝑼𝟐 

𝑼𝟑 
𝑼𝟒 
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next step is grouping the data into clusters, each 

with a cluster point determined using the 

following equation: 

𝐶𝑝𝑖 =
1

𝑘
∑ 𝑥𝑗

𝑘

𝑗=1

 (2) 

where 𝐶𝑝𝑖 is the i-th cluster point, 𝑘 is the 

number of data points, and  𝑥𝑗 is a data point. 

In the testing data process, the first step is 

finding the nearest neighbor between new data 

and some cluster points. To calculate the 

nearest neighbor distance the following 

equation was used: 

𝑑(𝑥, 𝐶𝑝) = √∑(𝑥𝑖 − 𝐶𝑝𝑖)2

𝑛

𝑖=1

 (3) 

where 𝑥 is new data and 𝐶𝑝𝑖 is the i-th cluster 

point 

After finding the nearest cluster, the next 

step is finding the nearest neighbor between the 

new data and data inside the cluster using 

LMKNCN [8]-[9]. The steps are as follows: 

a) Find the nearest neighbor 𝑞1 between testing 

data 𝑥 and training data in cluster 𝑗 𝑎𝑗
𝐶𝑝

 

using an Euclidean distance equation shown 

in (4). 

𝑑(𝑥, 𝑎𝑗
𝐶𝑝

) = √∑(𝑥𝑖 − 𝑎𝑗𝑖
𝐶𝑝

)2

𝑛

𝑖=1

 (4) 

b) Find the nearest centroid neighbor 𝐶𝑘 

between testing data and each centroid data. 

The new centroid data is gleaned from the 

midpoint between a nearest neighbor 𝑞1 to 

the k-th neighbor. 

𝐶𝑘 =
1

𝑘
∑ 𝑞𝑗

𝑘

𝑗=1

 (5) 

After finding the nearest centroid neighbor, 

the next step is finding k nearest neighbors.  

c) Calculating local average centroid vector 

𝑢𝑖𝑘
𝑁𝐶𝑁 from each class 𝑐𝑖. 

𝑢𝑖𝑘
𝑁𝐶𝑁 =

1

𝑘
∑ 𝑥𝑖𝑗

𝑁𝐶𝑁

𝑘

𝑗=1

 (6) 

where 𝑥𝑖𝑗
𝑁𝐶𝑁 is the training data for each 

class 𝑐𝑖. 

d) Finding the distance 𝑑(𝑥, 𝑢𝑖𝑘
𝑁𝐶𝑁) between 𝑥 

and the local average centroid vector 𝑢𝑖𝑘
𝑁𝐶𝑁 

using (7). 

𝑑(𝑥, 𝑢𝑖𝑘
𝑁𝐶𝑁) = √∑(𝑥 − 𝑢𝑖𝑘

𝑁𝐶𝑁)2

𝑛

𝑘=1

 (7) 

e) Finding testing data 𝑥 into class 𝑐, having 

the nearest distance between local average 

centroid vector 𝑢𝑖𝑗
𝑁𝐶𝑁 and testing data 𝑥 as 

(8). 

𝑐 = arg min
𝑐𝑖

𝑑(𝑥, 𝑢𝑖𝑗
𝑁𝐶𝑁)  (8) 

 

Deviance Distance 
The obstacle will be detected by the 

quadcopter at a distance of 1 meter. The 

quadcopter will record the obstacle’s 

dimensions (ℎ𝑢, ℎ𝑙, ℎ𝑟, ℎ𝑑) against the 

intersection between the quadcopter and the 

target point.  

Fig 3 illustrates how a quadcopter would 

read each deviance distance, with a side view in 

Fig 4 (a) and a top view in Fig 4 (b). Each 

deviance distance (𝛿𝑙, 𝛿𝑟, 𝛿𝑢, 𝛿𝑑) will be 

calculated using (9). 

𝜹𝒊 = 𝐭𝐚𝐧 𝜽𝒊 . 𝒅𝒊 

𝜃𝑖 = 𝑡𝑎𝑛−1 (
ℎ𝑖 + 𝑡

𝑑𝑖
) 

(9) 

where 𝛿𝑖 is a deviance distance 𝑖, 𝜃𝑖 is the 

deviance angle 𝑖, ℎ𝑖 is obstacle dimension 𝑖, 𝑡  
is the safe distance and 𝑑𝑜 is the distance 

between the obstacle and the quadcopter. 

 

Energy 
Alongside considering deviance distance, 

the quadcopter must also consider energy [14]. 

In this case, there are two energy types [15]. 

Kinetic energy happens where the quadcopter 

moves without any altitude changes, whereas 

potential energy happens where the quadcopter 

changed altitude. Calculating kinetic energy 

may be done using (10). 

∆𝐸𝑘 =
1

2
𝑚𝑉2 (10) 

where 𝑚 is the quadcopter’s mass (𝑘𝑔) and 𝑉 

is its velocity (𝑚/𝑠). Assume that there is no 

energy loss from the quadcopter changing 

altitudes. Calculating potential energy may be 

done using (11). 

∆𝐸𝑝 = 𝑚. 𝑔. ∆ℎ (11) 

where 𝑚 is the mass of the quadcopter, 𝑔 is 

gravity and ∆ℎ is the height difference between 

the quadcopter’s and the avoidance point’s 

coordinates. 

 



Hendy P., & Trihastuti A., Obstacle Avoidance ... 113 

 

 

𝛥𝐸𝑅,𝑖 is the sum of energy needed by the 

quadcopter to move between its initial 

coordinates (𝑋𝑅 ,  𝑌𝑅 ,  𝑍𝑅) to the avoidance 

point’s coordinates (𝑋𝐾 ,  𝑌𝐾 ,  𝑍𝐾). The needed 

energy sum 𝛥𝐸𝑅,𝑖 is defined as: 

∆𝐸𝑖,𝑗 = ∆𝐸𝑝 + ∆𝐸𝑘   (12) 

where ∆𝐸𝑝 is the potential energy and ∆𝐸𝑘 is 

the kinetic energy of the quadcopter. 

Evading in different directions require 

different amounts of energy needed. Evading in 

lateral directions (left or right) results in 

potential energy ∆𝐸𝑝 being zero due to no 

changes in altitude. However, when the 

quadcopter evades in vertical directions (up or 

down), the altitude changes mean the presence 

of potential energy ∆𝐸𝑝. 

Quadcopter Control 
This research used a proportional-derivative 

(PD) controller to control the quadcopter’s 

movements. The controller’s inner loop is 

devoted to attitude control, while its outer loop 

is devoted to position control [16]. The 

quadcopter control system is illustrated in Fig. 

5. 

From the tuning experiments, the 

proportional-derivative control parameters 

used in this research are as follows: 

 

𝑘𝑝,𝑋 = 5, 𝑘𝑝,𝑌 = 5 , 𝑘𝑝,𝑍 = 20 

 𝑘𝑑,𝑋 = 5, 𝑘𝑑,𝑌 = 5 , 𝑘𝑑,𝑍 = 10 

𝑘𝑝,𝜙 = 3000 , 𝑘𝑝,𝜃 = 3000, 𝑘𝑝,𝜓 = 3000  

𝑘𝑑,𝜙 = 300 , 𝑘𝑑,𝜃 = 300, 𝑘𝑑,𝜓 = 300 

 

 

 

Fig 3. Deviance distance illustration 

 

Explanation: 

a : Deviance Up 

b : Deviance Left 

c : Deviance Right 

d : Deviance Down 

 

(a) 

 

(b) 

Fig 4. Deviance distance illustration (a) Side 

view (b) Top view 

Table 2. Cluster training data 

No. 
𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 
Cluster 

1 0.5 0.75 2.25 2.5 1 

2 0.5 1.5 1.5 2.5 2 

3 0.5 2.25 0.75 2.5 3 

4 1.5 0.75 2.25 1.5 4 

5 1.5 1.5 1.5 1.5 5 

6 1.5 2.25 0.75 1.5 6 

7 2.5 0.75 2.25 0.5 7 

8 2.5 1.5 1.5 0.5 8 

9 2.5 2.25 0.75 0.5 9 

Table 3. Obstacle training data 

No. 
ℎ𝑢 

(𝑚) 

ℎ𝑙 

(𝑚) 

ℎ𝑟 

(𝑚) 

ℎ𝑑 

(𝑚) 
Class 

1 0.01 0.2 2.8 2.99 Up 

2 0.04 0.4 2.6 2.96 Down 

3 0.21 0.2 2.8 2.79 Left 

4 0.24 0.4 2.6 2.76 Left 

5 0.4 2 1 2.6 Right 

6 0.5 1.8 1.2 2.5 Right 

7 2.99 0.2 2.8 0.01 Down 

8 2.96 0.4 2.6 0.04 Down 

: : : : : : 

316 2.79 2.8 0.2 0.21 Right 
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Table 4. Testing data 

No. ℎ𝑢 (𝑚) ℎ𝑙  (𝑚) ℎ𝑟 (𝑚) ℎ𝑑  (𝑚) Class Status 

1 0.3001 0.6 0.6 0.2999 Right Correct 

2 0.4001 0.71 0.49 0.1999 Right Correct 

3 0.2401 0.4 2.6 2.76 Left Correct 

4 0.1801 0.59 0.61 0.4199 Left Correct 

5 0.0701 0.31 0.89 0.5299 Left Correct 

6 0.0101 0.51 0.69 0.5899 Up Correct 

7 0.0401 0.8 0.4 0.5599 Up Correct 

8 0.5901 0.86 0.34 0.0099 Down Correct 

9 0.5881 0.49 0.71 0.0119 Down Correct 

10 0.4301 0.87 0.33 0.1699 Right Correct 

: : : : : : : 

40 0.0801 0.87 0.33 0.5199 Up Incorrect 

RESULT AND DISCUSSION 

This chapter discusses the results of the 

modified LMKNCN algorithm in doing certain 

tests. In the evasion direction avoidance tests, 

the features used in training data [17] is first 

discussed, as well as accuracy testing. Then, the 

algorithm is tested in quadcopter flight plans 

that must reach its target point with static and 

dynamic obstacles in the way.  

The LMKNCN classification features used 

in this research is the dimensions of the obstacle 

against the quadcopter’s position. The 

dimensions feature data is processed into 

deviance distance data. This feature data 

consisted of 4 parameters, that of upper span 

ℎ𝑢, left span ℎ𝑙, right span ℎ𝑟, and lower span 

ℎ𝑑. The deviance distance data 𝛿 consisted of 4 

parameters, that of left, right, up and down 

deviances. Table 2 shows the feature data used 

in cluster training data, Table 3 shows the 

obstacle training data, and Table 4 shows the 

testing data, all of which resolves as correct.  

The simulation tests used a computer with 

Intel Core i3 CPU of 1.70 GHz and 4 Gb RAM. 

The tests result in an accuracy of 97.5% (Table 

4). The learning process between training and 

testing data required a computation time of 

0.142341 seconds.  

Case 1 
In Case 1, the start point is in coordinate 

(0.5,4,2) and the target point is in coordinate 
(7.5,4,2). This case has 1 static obstacle in 

coordinate (4,4.1,2), shown in top view in Fig 

6 and side view in Fig 7.  

 

Case 2 
In Case 2, there is 1 dynamic obstacle 

moving up and down the positive z-axis. This 

obstacle has an innate velocity of 0.005𝑚/𝑠. 

The quadcopter is positioned at the start point 

(0.5,4,2) and has the target point (7.5,4,2). The 

dynamic obstacle has an initial coordinate 
(4, 4, 1.6) shown in Fig 8 and Fig 9. 

 

Case 3 
In Case 3, the quadcopter is placed in the 

start point (0.5,4,2) and its target point is 
(7.5,4,2). There are 2 dynamic obstacles with 

starting coordinates of (3.4, 2.2, 2.26) and 

(5.2,6.41,1.88). The first obstacle has an innate 

velocity of 0.02 𝑚/𝑠, moving the the left 

(positive y-axis). The second obstacle has an 

innate velocity of 0.01 𝑚/𝑠, moving to the 

right (negative y-axis) as shown in Fig 10 and 

Fig 11. 

 

Result Case 1  
The obstacle is detected when the 

quadcopter is in coordinate (2.8, 4, 2), in 4𝑠. 

The detected obstacle’s dimensions from the 

quadcopter are hu = 0.4001, ℎ𝑙 = 0.7, ℎ𝑟 =
0.5 and ℎ𝑑 = 0.1999. 

The closest training cluster data (Table 5) in 

this case is in Cluster 8. The first closest data in 

the cluster is the 12th data point. The centroids 

are located in the 15th and the 16th, shown in 

Table 6. The most efficient evasion direction is 

to the right due to the 3 nearest neighbors to the 

static obstacle training data in Cluster 8 (Table 

7) showed the right class. 
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Result Case 2 
The quadcopter detected the obstacle in 4𝑠 

in coordinate (4, 4.1, 2). The detected 

dimensions are ℎ𝑢 = 0.3101, ℎ𝑙 = 0.6, ℎ𝑟 =
0.6 and ℎ𝑑 = 0.0399. 

Table 8 showed that the closest cluster to the 

obstacle training data is Cluster 8. The first 

closest training data is the 11th data. The 

centroids are located in the 12th and 6th data 

(Table 9). The 3 nearest neighbors showed the 

down class (Table 10), therefore the evasion 

direction is to the bottom. 

 

Result Case 3 
The quadcopter detected the first obstacle in 

4𝑠 in coordinate (2.3, 4, 2). In 13𝑠, the 

quadcopter detected the second obstacle in 

coordinate (4, 4, 2). The first obstacle’s 

dimensions are ℎ𝑢 = 0.5601, ℎ𝑙 = 0.2, ℎ𝑟 = 0 

and ℎ𝑑 = 0.0399. The second obstacle’s 

dimensions are ℎ𝑢 = 0.1808, ℎ𝑙 = 0, ℎ𝑟 =
0.75 and ℎ𝑑 = 0.4192.  

The closest cluster for the first obstacle is 

Cluster 9, as shown in Table 11. The closest 

cluster for the second obstacle is Cluster 1, as 

shown in Table 14. The closest training data in 

each cluster is the 8th for the first obstacle and 

the 5th for the second obstacle. The centroids 

for the first obstacle are the 7th and the 4th 

(Table 12). The centroids for the second 

obstacle are the 6th and the 7th (Table 15). For 

the first obstacle, the most efficient evasion 

direction is to the right, as shown in Table 13. 

For the second obstacle, the chosen evasion 

direction is to the left as shown in Table 16. 

 

 

(a) (b) 

Fig 5. Case 1 top view (a) 9s (b) 17s 

 
 

(a) (b) 

Fig 6. Case 1 side view (a) 9s (b) 17s 

Table 5. Nearest cluster training data for case 1 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 
Cluster 

Euclid 

Distance 

0.5 0.6 0.6 0.1 8 0.1999 

0.3 0.6 0.6 0.3 5 0.2001 

0.5 0.9 0.3 0.1 9 0.316165 

Table 6. Centroid data 

Data 

Pairs 
𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 

Euclid 

Distance 

12&15 0.45 0.68 0.52 0.15 0.076 

12&16 0.46 0.72 0.48 0.14 0.0893 

12&13 0.42 0.64 0.56 0.18 0.0894 

12&14 0.43 0.64 0.56 0.16 0.0982 

Table 7. Nearest static obstacle training data in 

cluster 8 for case 1 

𝒉𝒖 (𝒎) 𝒉𝒍 (𝒎) 𝒉𝒓 (𝒎) 𝒉𝒅 (𝒎) Class 

0.4 0.64 0.56 0.2 Right 

0.5 0.72 0.48 0.1 Right 

0.52 0.8 0.4 0.08 Right 

0.44 0.64 0.56 0.16 Right 

0.47 0.64 0.56 0.13 Right 

 

 

 

(a) (b) 

Fig 7. Case 2 top view (a) 9s (b) 17s 

 

 

(a) (b) 

Fig 8. Case 2 side view (a) 9s (b) 17s 

Table 8. Nearest cluster training data for Case 2 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 
Cluster 

Euclid 

Distance 

0.29 0.6 0.6 0.06 8 0.0261 

0.17 0.6 0.6 0.17 5 0.191 

0.06 0.6 0.6 0.29 2 0.356 

 



116   Jurnal Ilmiah KURSOR Vol. 11, No. 3, Juli 2022, hal 109 - 118 

 

 

Table 9. Centroid data 

Data 

Pairs 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 

Euclid 

Distance 

11 & 12 0.3 0.6 0.6 0.05 0.0178 

11 & 6 0.29 0.6 0.6 0.06 0.0343 

11 & 5 0.28 0.6 0.6 0.07 0.0467 

11 & 13 0.31 0.64 0.56 0.04 0.0568 

Table 10. Nearest static obstacle training data 

in cluster 8 for case 2 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 
Class 

0.3 0.56 0.64 0.05 Down 

0.3 0.64 0.56 0.05 Down 

0.27 0.64 0.56 0.08 Down 

0.26 0.64 0.56 0.09 Right 

0.31 0.72 0.48 0.03 Down 

 

 

(a) (b) 

 

 

(c) (d) 

Fig 9. Case 3 top view (a) 9s  (b) 13s  (c) 23s 

(d) 31s 

  

(a) (b) 

 

 

(c) (d) 

Fig 10. Case 3 Side View (a) 9s (b) 13s (c) 23s 

(d) 31s 

Table 11. Nearest cluster training data for case 

3 first obstacle 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 
Cluster 

Euclid 

Distance 

0.5 0.15 0.05 0.1 9 0.1106 

0.5 0.1 0.1 0.1 8 0.165 

0.5 0.05 0.15 0.1 7 0.2285 

Table 12. Centroid data 

Data 

Pairs 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 

Euclid 

Distance 

8 & 

7 
0.55 0.18 0.02 0.045 0.0292 

8 & 

4 
0.58 0.187 0.01 0.022 0.0316 

8 & 

3 
0.57 0.18 0.02 0.025 0.0353 

8 & 

2 
0.57 0.17 0.03 0.031 0.0398 

Table 13. Nearest right-moving dynamic 

obstacle training data in cluster 9 for 

case 3 first obstacle 

𝒉𝒖 (𝒎) 𝒉𝒍 (𝒎) 𝒉𝒓 (𝒎) 𝒉𝒅 (𝒎) Class 

0.56 0.19 0.01 0.04 Right 

0.55 0.17 0.03 0.05 Right 

0.6 0.19 0.01 0.002 Down 

0.59 0.17 0.03 0.01 Down 

0.58 0.16 0.04 0.02 Down 

Table 14. Nearest cluster training data for Case 

3 second obstacle 

𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 
Cluster 

Euclid 

Distance 

0.1 0.19 0.56 0.5 1 0.2887 

0.3 0.19 0.56 0.3 4 0.3142 

0.5 0.19 0.56 0.1 7 0.5235 

Table 15. Centroid data 

Data 

Pairs 
𝒉𝒖 

(𝒎) 

𝒉𝒍 

(𝒎) 

𝒉𝒓 

(𝒎) 

𝒉𝒅 

(𝒎) 

Euclid 

Distance 

5 & 6 0.04 0.07 0.67 0.55 0.2194 

5 & 7 0.05 0.1 0.65 0.55 0.2317 

5 & 1 0.02 0.05 0.7 0.58 0.2354 

5 & 2 0.02 0.07 0.67 0.57 0.2445 

Table 16. Nearest static obstacle training data 

in Cluster 1 for Case 3 second obstacle 

𝒉𝒖 (𝒎) 𝒉𝒍 (𝒎) 𝒉𝒓 (𝒎) 𝒉𝒅 (𝒎) Class 

0.042 0.05 0.7 0.558 Left 

0.048 0.1 0.65 0.552 Left 

0.06 0.15 0.6 0.54 Left 

0.002 0.05 0.7 0.598 Up 

0.008 0.1 0.65 0.592 Up 
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CONCLUSION 

This research has been This research discussed 

obstacle avoidance for quadcopter in a 3D 

environment. The system is designed to resolve 

efficient avoidance direction by minimizing 

energy and distance needed to evade static and 

dynamic obstacles. A modified Local Mean K-

Nearest Centroid Neighbor (LKMNCN) 

algorithm is used in the system by splitting 

training data into multiple clusters. The 

quadcopter in this research used a proportional-

derivative controller to reach the desired 

waypoints. 

The training data in this research is divided 

into cluster training data and obstacle training 

data. The obstacle training data is divided into 

5 parts corresponding to the obstacle’s 

characteristics. These include static obstacle 

data, up-moving, down-moving, right-moving, 

and left moving data. The nearest neighbor 

number 𝑘 is set at 3.     

The simulation results show that the 

designed system resolves an avoidance decision 

accuracy of 97.5%. Learning time between 

training and testing data required a measured 

computation time of 0.142341 seconds. With 

this system, the quadcopter was able to avoid 

static and dynamic obstacles of varying 

velocities. 
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