The Multiple Brain Tumor with Modified DenseNet121 Architecture Using Brain MRI Images

Classification Multiclass Brain Tumor Using Brain MRI Images with Modified DenseNet121

Authors

  • Syaqila Sal Sabila Universitas Negeri Surabaya, Indonesia
  • Hapsari Peni Agustin Tjahyaningtyas Universitas Negeri Surabaya, Indonesia

DOI:

https://doi.org/10.21107/kursor.v12i3.379

Keywords:

Convolutional neural network, Classification Algorithms, Hyperparameter Optimization, Digital image Processing, Deep Learning, CNN, Multi Layer Perceptron, Konvolusi, Tensorflow.

Abstract

Brain tumors are capable of developing in individuals of all ages and can originate from brain tissue in various shapes and sizes. As a result, it is critical to quickly identify patients in order to expedite treatment. Magnetic Resonance Imaging (MRI) of the brain is an appropriate technique for identifying chronic conditions, including tumors. Deep learning methodologies have suggested numerous medical analysis strategies for health monitoring and brain tumor identification. This study used a modified version of DenseNet121 to accurately categorize three different forms of brain tumors: meningioma, pituitary, and glioma. Following the last transition layer, the DenseNet121 modification adds DropOut and GlobalAveragePooling layers. We determine the optimal hyperparameters that yield the highest performance by comparing several factors, including dropout, epoch, optimizer, and activation function. Evaluation of classification performance involves a comparison between Basic CNN and Basic DenseNet. Results of the analysis show that the modified DenseNet121 model works best with the following ideal hyperparameters: ADAM optimizer, Softmax activation, 150 epochs of training, and an 0.8 dropout rate. The performance results show an accuracy value of 0.9782, exceeding previous research findings.

Downloads

Download data is not yet available.

References

R. Azzarelli, B. D. Simons, and A. Philpott, “The developmental origin of brain tumours: A cellular and molecular framework,” Development (Cambridge), vol. 145, no. 10. Company of Biologists Ltd, May 01, 2018. doi: 10.1242/dev.162693.

M. M. Badža and M. C. Barjaktarović, “Classification of brain tumors from mri images using a convolutional neural network,” Applied Sciences (Switzerland), vol. 10, no. 6, Mar. 2020, doi: 10.3390/app10061999.

J. Kang, Z. Ullah, and J. Gwak, “Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers,” Sensors, vol. 21, no. 6, pp. 1–21, Mar. 2021, doi: 10.3390/s21062222.

A. Kadam, S. Bhuvaji, and S. Deshpande, “Brain Tumor Classification using Deep Learning Algorithms,” 2021. [Online]. Available: www.ijraset.com

H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36

J. Amin, M. Sharif, M. Yasmin, and S. L. Fernandes, “A distinctive approach in brain tumor detection and classification using MRI,” Pattern Recognit Lett, vol. 139, pp. 118–127, Nov. 2020, doi: 10.1016/j.patrec.2017.10.036.

P. K. Chahal, S. Pandey, and S. Goel, “A survey on brain tumor detection techniques for MR images,” Multimed Tools Appl, vol. 79, no. 29–30, pp. 21771–21814, Aug. 2020, doi: 10.1007/s11042-020-08898-3.

M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and H. F. A. Hamed, “A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned,” Magnetic Resonance Imaging, vol. 61. Elsevier Inc., pp. 300–318, Sep. 01, 2019. doi: 10.1016/j.mri.2019.05.028.

H. A. Khan, W. Jue, M. Mushtaq, and M. U. Mushtaq, “Brain tumor classification in MRI image using convolutional neural network,” Mathematical Biosciences and Engineering, vol. 17, no. 5, pp. 6203–6216, 2020, doi: 10.3934/MBE.2020328.

W. L. Bi et al., “Artificial intelligence in cancer imaging: Clinical challenges and applications,” CA Cancer J Clin, vol. 69, no. 2, pp. 127–157, Mar. 2019, doi: 10.3322/caac.21552.

E. D. Bander et al., “Tubular brain tumor biopsy improves diagnostic yield for subcortical lesions,” J Neurooncol, vol. 141, no. 1, pp. 121–129, Jan. 2019, doi: 10.1007/s11060-018-03014-w.

S. Iqbal, M. U. G. Khan, T. Saba, and A. Rehman, “Computer-assisted brain tumor type discrimination using magnetic resonance imaging features,” Biomedical Engineering Letters, vol. 8, no. 1. Springer Verlag, pp. 5–28, Feb. 01, 2019. doi: 10.1007/s13534-017-0050-3.

R. Vankdothu and M. A. Hameed, “Brain tumor MRI images identification and classification based on the recurrent convolutional neural network,” Measurement: Sensors, vol. 24, Dec. 2022, doi: 10.1016/j.measen.2022.100412.

N. Vani, A. Sowmya, and N. Jayamma, “Brain Tumor Classification using Support Vector Machine,” International Research Journal of Engineering and Technology, vol. 4, no. 07, pp. 1724–1729, 2017, [Online]. Available: www.irjet.net

H. T. Zaw, N. Maneerat, and Y. K. Win, Brain tumor detection based on Naïve Bayes Classification, vol. 19. 2019.

G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, “Joint entity recognition and relation extraction as a multi-head selection problem,” Expert System with Applications, vol. 114, no. 30, pp. 34–45, Apr. 2019, doi: 10.1016/j.eswa.2018.07.032.

I. Fahruzi, “SLEEP DISORDER IDENTIFICATION FROM SINGLE LEAD ECG BY IMPROVING HYPERPARAMETERS OF 1D-CNN,” Jurnal Ilmiah KURSOR, vol. 11, no. 4, pp. 157–164, 2022.

W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review,” Neural Computation, vol. 29, no. 9. MIT Press Journals, pp. 2352–2449, Sep. 01, 2017. doi: 10.1162/NECO_a_00990.

H. Basri, I. Syarif, S. Sukaridhoto, and M. F. Falah, “INTELLIGENT SYSTEM FOR AUTOMATIC CLASSIFICATION OF FRUIT DEFECT USING FASTER REGION-BASED CONVOLUTIONAL NEURAL NETWORK (FASTER R-CNN),” Jurnal Ilmiah KURSOR, vol. 10, no. 1, pp. 1–12, 2019.

R. Anantama, H. Suyono, and M. Aswin, “APPLICATION OF COST-SENSITIVE CONVOLUTIONAL NEURAL NETWORK FOR PNEUMONIA DETECTION,” Jurnal Ilmiah KURSOR, vol. 11, no. 3, pp. 101–108, 2022.

O. N. Belaid and M. Loudini, “Classification of brain tumor by combination of pre-trained VGG16 CNN,” Journal of Information Technology Management, vol. 12, no. 2, pp. 13–25, 2020, doi: 10.22059/JITM.2020.75788.

S. Sarkar, A. Kumar, S. Aich, S. Chakraborty, J.-S. Sim, and H.-C. Kim, “A CNN based Approach for the Detection of Brain Tumor Using MRI Scans,” Test Engineering and Management, vol. 83, pp. 16580–16586, 2020, [Online]. Available: https://www.researchgate.net/publication/342048436

W. Ayadi, W. Elhamzi, I. Charfi, and M. Atri, “Deep CNN for Brain Tumor Classification,” Neural Process Lett, vol. 53, no. 1, pp. 671–700, Feb. 2021, doi: 10.1007/s11063-020-10398-2.

Q. Zhu, B. Du, B. Turkbey, P. L. . Choyke, and P. Yan, “Deeply-Supervised CNN for Prostate Segmentation,” 2017 International Joint Coference on Neural Network (IJCNN), pp. 178–184, Mar. 2017, [Online]. Available: http://arxiv.org/abs/1703.07523

F. Badri, M. Taqijuddin Alawiy, and E. M. Yuniarno, “DEEP LEARNING ARCHITECTURE BASED ON CONVOLUTIONAL NEURAL NETWORK (CNN) ON ANIMAL IMAGE CLASSIFICATION,” Jurnal Ilmiah KURSOR, vol. 12, no. 2, pp. 83–92, 2023.

Md. A. Hossain and Md. S. Alam Sajib, “Classification of Image using Convolutional Neural Network (CNN),” Global Journal of Computer Science and Technology, pp. 13–18, May 2019, doi: 10.34257/gjcstdvol19is2pg13.

M. Jogin, Mohana, M. S. Madhulika, G. D. Divya, R. K. Meghana, and S. Apoorva, “Feature extraction using convolution neural networks (CNN) and deep learning,” in 2019 3rd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2019 - Proceedings, Institute of Electrical and Electronics Engineers Inc., May 2019, pp. 2319–2323. doi: 10.1109/RTEICT42901.2018.9012507.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” 2021. [Online]. Available: https://github.com/liuzhuang13/DenseNet.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” 2017. [Online]. Available: https://github.com/liuzhuang13/DenseNet.

W. Guo, Z. Xu, and H. Zhang, “Interstitial lung disease classification using improved DenseNet,” Multimed Tools Appl, vol. 78, no. 21, pp. 30615–30626, Nov. 2019, doi: 10.1007/s11042-018-6535-y.

N. HASAN, Y. BAO, A. SHAWON, AND Y. HUANG, “DENSENET CONVOLUTIONAL NEURAL NETWORKS APPLICATION FOR PREDICTING COVID-19 USING CT IMAGE,” SN COMPUT SCI, VOL. 2, NO. 5, SEP. 2021, DOI: 10.1007/S42979-021-00782-7.

A. Gajre, O. S. Khaladkar, and A. J. Patil, “DenseNet for Brain Tumor Classification in MRI Images,” 2022. [Online]. Available: www.ijisrt.com

P. Afshar, K. N. Plataniotis, and A. Mohammadi, “Capsule Networks for Brain Tumor Classification based on MRI Images and Course Tumor Boundaries,” pp. 1368–1372, Nov. 2019, [Online]. Available: http://arxiv.org/abs/1811.00597

K. Kavin Kumar et al., “Brain Tumor Identification Using Data Augmentation and Transfer Learning Approach,” Computer Systems Science and Engineering, vol. 46, no. 2, pp. 1845–1861, 2023, doi: 10.32604/csse.2023.033927.

O. Sevli, “Performance Comparison of Different Pre-Trained Deep Learning Models in Classifying Brain MRI Images,” Acta Infologica, vol. 5, no. 1, pp. 141–154, Jul. 2021, doi: 10.26650/acin.880918.

Z. N. K. SWATI ET AL., “BRAIN TUMOR CLASSIFICATION FOR MR IMAGES USING TRANSFER LEARNING AND FINE-TUNING,” COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, VOL. 75, PP. 34–46, JUL. 2019, DOI: 10.1016/J.COMPMEDIMAG.2019.05.001

Downloads

Published

2023-07-08

Issue

Section

Articles

Citation Check