Articles

Segmentation and Counting the Number of Teeth Panoramic Dental Image

Main Article Content

Nur Nafi'iyah Nafi'iyah

Abstract

There are many methods for segmentation human teeth or dental radiographs. The most frequently used segmentation method is thresholding. In developing a system of segmentation in human teeth based on panoramic tooth photographs, several very important steps are needed. Segmentation is the separation of teeth from the background and separation of each tooth. The purpose of this study, which is to separate dental image per tooth by segmentation. In addition, the other most important process is feature extraction, which is the process of knowing the most important part of the image of the tooth to be processed. Stages in this study, namely: improving the image with CLAHE, then thresholding, the results of thresholding are segmented using integral projections, the results of segmentation extracted features using tooth centroid. Thresholding or binarization is changing grayscale image into binary forms, the algorithm used is iterative adhaptive thresholding. The accuracy value of the thresholding process or separating teeth from the background is 66.67%. Segmentation is done twice, namely: separating the maxilla and mandible, and separating each tooth. Separates the maxilla and mandible using a horizontal integral projection algorithm. Whereas to separate each tooth using vertical integral projection. In order for the separation process of each tooth to produce the best, the tooth panoramic photo is divided into three parts, namely: the left, right, and center. However, from the process of separation of each tooth the accuracy is 33.33%.

Downloads

Download data is not yet available.

Article Details

How to Cite
NAFI'IYAH, Nur Nafi'iyah. Segmentation and Counting the Number of Teeth Panoramic Dental Image. Jurnal Ilmiah Kursor, [S.l.], v. 9, n. 4, oct. 2019. ISSN 2301-6914. Available at: <http://kursorjournal.org/index.php/kursor/article/view/181>. Date accessed: 22 oct. 2019. doi: https://doi.org/10.28961/kursor.v9i4.181.
Section
Articles

References

[1] Abdel-Mottaleb, Mohamed. (2001). Challenges of Developing an Automated Dental Identification System.
[2] Ahmad, Usman. (2005). Pengolahan Citra Digital dan Teknik Pemrogramannya. Yogyakarta: Graha Ilmu.
[3] Anil K Jain, Hong Chen. (2004). Matching of Dental X-Ray Image for Human Identification. Pergamon Vol.37, 1519-1532.
[4] Basuki, Ahmad. (2005). Pengolahan Citra Digital Menggunakan Visual Basic. Yogyakarta: Graha Ilmu.
[5] Chen, Hong. (2007). Automatic Forensic Identification Based on Dental Radiographs. Departement of Computers Science and Engineering.
[6] Dighe, Shubhangi. (2012). Prepocessing, Segmentation and Matching of Dental Radiographs used in Dental Biometrics. Warse, Vo.1, No.2.
[7] Fadlisyah. (2007). Computer Vision and Pengolahan Citra. Yogyakarta: Andi.
[8] Fahmy Gamal, Diaa Nassar. (2004). Toward an Automated Dental Identification. ICBA, 789-796.
[9] Fausett, Laurene. (n.d.). Fundamentals of Neural Networks Architectures, Algorithms and Applications.
[10] Gozales, Rafael C. (2004). Digital Image Processing using Matlab. Pearson Education.
[11] Hermawan, Arief. (2006). Jaringan Syaraf Tiruan Teori dan Aplikasi. Yogyakarta: Andi.
[12] Indrayani, Tutuk. (2010). Segmentasi Cortical Bone pada Citra Dental Panoramic Radiograph Menggunakan Watershed Berintegrasi dengan Active Countour Level Set. Surabaya.
[13] Irawan, Fariza A. (2012). Buku Pintar Pemrograman matlab. Yogyakarta: Mediakom.
[14] Ito, Koichi A. (2008). Dental Radiograph Recognition System using Phase-Only Correlation for Human Identification. IEICE TRANS Vol. E91-A, 298-305.
[15] Jain, Anil K. (2003). Dental Biometrics: Human Identification using Dental Radiographs. AVBPA, UK, 429-437.
[16] L, Roidel Simatra. (2007). Klasifikasi Citra Gigi Berbasis Tekstur dengan Filter Gabor. Suarabaya.
[17] Mahoor, Mohammad H. (2004). Classification and Numbering of Teeth in Dental Bitewing Image. Pergamon.
[18] Murni, Aniati. (1992). Pengantar Pengolahan Citra. Jakarta: Elex Media Komputindo.
[19] Nafiiyah, Nur. (2015). Algoritma Kohonen dalam Mengubah Citra Graylevel menjadi Citra Biner. JITIKA Vol. 9, No.2.
[20] Nafiiyah, Nur. (2016). Perbandingan Modus, Median, K-Standar Deviasi, Iterative, Mean dan Otsu dalam Thresholding. Spirit Vol.8, No.2.
[21] Nafiiyah, Nur. (2017, September). Fuzzy Self Organizing Map untuk Proses Thresholding pada Citra Dental Panoramic. Senasif.
[22] Nassar, Diaa Eldin. (2001). A Prototype Automatic Dental Identification System (ADIS). Morgantown, West Virginia: Departement of Computers Science and Electrical Engineering.
[23] Nassar, Diaa Eldin. (2005). Automated Dental Identification A Micro-Macro Decision-Making Approach. Doctor of Philoshopy Departement of Computer Science and Engineering.
[24] Nassar, Diaa Eldin. (2007). A Neural Network System for Matching Dental Radiographs. Elsevier Vol. 40, 65-79.
[25] Nur Nafiiyah, Retno Wardhani. (2017). Perbandingan Otsu dan Iterative Adaptive Thresholding dalam Binerisasi Gigi Kaninus Foto Panoramik. JITIKA Vol. 11, No. 1.
[26] Paulus, Erick. (2007). GUI Matlab. Yogyakarta: Andi.
[27] Prasetyo, Eko. (2011). Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Yogyakarta: Andi.
[28] Putra, Darma. (2010). Pengolahan Citra Digital. Yogyakarta: Andi.
[29] Setyati, Endang. (2000). Tesis Pengenalan Wajah dengan Menggunakan Analisis Komponen Utama. Surabaya.
[30] Siang, Jong Jek. (2005). Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: Andi.
[31] Wijaya, Marvin Ch. (2007). Pengolahan Citra Digital Menggunakan Matlab Image Processing Toolbox. Bandung: Informatika.
[32] Yofiyanto, Evan. (2010). Klasifikasi Gigi Molar dan Premolar pada Dental Panoramic Radiograph. Suarabaya.
[33] Yuniarti, Anny. (2012). Classification and Numbering of Dental Radiograph for an Automated Human Identification System. Telkomnika Vol.10, No.1.